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a b s t r a c t

Maintaining appropriate levels of food intake and developing regularity in eating habits is crucial to
weight loss and the preservation of a healthy lifestyle. Moreover, awareness of eating habits is an
important step towards portion control and weight loss. In this paper, we introduce a novel food-intake
monitoring system based around a wearable wireless-enabled necklace.

The proposed necklace includes an embedded piezoelectric sensor, small Arduino-compatible
microcontroller, Bluetooth LE transceiver, and Lithium-Polymer battery. Motion in the throat is captured
and transmitted to a mobile application for processing and user guidance. Results from data collected
from 30 subjects indicate that it is possible to detect solid and liquid foods, with an F-measure of 0.837
and 0.864, respectively, using a naive Bayes classifier. Furthermore, identification of extraneous motions
such as head turns and walking are shown to significantly reduce the false positive rate of swallow
detection.

& 2015 Elsevier Ltd. All rights reserved.

1. Motivation

In 2008, medical costs associated with obesity were estimated
to be over $147 billion [1], and over one-third of adults in the
United States are considered obese. The average BMI (body mass
index) has consistently increased over the last two decades,
which has been shown to be a contributor to risk of stroke,
diabetes, certain cancers, heart disease, and other conditions [1].
Though many activity-monitoring systems have been proposed
[2–4], little research has been conducted on quantifying the
volume of food consumption, which has been shown to correlate
with weight gain [5]. Though countless manual data collections
have been proposed such as food records and 24-h recall, these
approaches suffer from poor accuracy, high user burden, and low
compliance. Wireless health-monitoring technologies have the
potential to promote healthy lifestyle behavior and address the
ultimate goal of enabling better lifestyle choices. In this paper, we
describe a wearable nutrition-monitoring system in the form of a
necklace, which is capable of identifying swallows, perform-
ing basic classification, and providing user guidance through a
mobile application.

2. Background

Our work on nutrition monitoring pertains to the development
and test of an nutrition-monitoring necklace with an embedded
piezoelectric (vibration) sensor. Piezoelectric sensors are capable
of producing a voltage at their terminals in response to mechanical
stress. Thus, the system is capable of detecting swallows based on
skin movement in the lower trachea during ingestion. Vibration-
sensor data was transmitted to a mobile application using a low-
powered Bluetooth LE transceiver built into the processing board
mounted upon the necklace. The application included algorithms
for identifying swallows, performing basic classification between
solid and liquid foods, and providing recommendations to the user
with respect to the timing, volume, and composition of their
meals. An overview of the hardware architecture is provided
in Fig. 6. The system includes a piezoelectric strip, Bluetooth-
compatible microcontroller board, and a small lithium-polymer or
cell battery for powering the system.

Though the system provides high accuracy in laboratory-based
testing environments, accuracy is compromised in certain use-
cases such as walking, running, and head motions in both
horizontal and vertical directions. Often, these motions are
detected as swallows, which significantly reduced the accuracy
and practicality of the system. Therefore, we propose different
classification techniques to distinguish these motions from those
associated with eating using both the piezoelectric sensor, and a
small accelerometer.

Fig. 7 shows how the addition of a new sensor could be used to
assist in activity classification to improve system accuracy. Prior to
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swallow detection, which in the previous system was based on
vibration sensor data alone, activity recognition is computed from
a necklace-mounted tri-axial accelerometer. This accelerometer
data is intended to detect motion of the necklace itself caused by
head motions or movement, rather than the skin in the lower
throat as in the case of the piezoelectric sensor.

This paper is organized as follows. Section 3 presents an overview
of prior art in the field of food intake monitoring. Section 4 describes
the algorithms used to detect swallows, followed by the experimen-
tal procedure in 5. The evaluation is presented in Section 6, followed
by the conclusion in Section 7.

3. Related works

3.1. Manual methods

Food records generally are not impacted by the accuracy of a
subject's memory; they typically require individual to make note
of their eating habits during or immediately after a meal [6].
However, there are several problems with this approach. In cases
where assessment of a typical diet is the goal, this technique is not
feasible because it has been found that the necessity of completing
a food record affects dietary choices. Other concerns include
patient compliance, and the difficulty that untrained individuals
face when accurately assessing portion size.

One of the most simple and yet pervasive methods of monitor-
ing dietary intake is the multi-pass 24-h dietary recall method,
based on the data patients provide at the end of a randomly
selected day. This approach measures food intake in a reasonably
quantitative manner but with significant error because people do
not recall the exact amount of food they have eaten [7]. Experi-
mental data shows that food intake is usually reported with error
and measurement variance also depends on the patient's experi-
ence with this system [8].

A third method for manually assessing dietary intake is to use a
food frequency questionnaire (FFQ), in which individuals specify
their rate of consumption for various food items. Nutritional intake
can subsequently be assessed by summing various food types
provided within the list [6]. Though this technique is inexpensive
to administer and insensitive to recent changes in diet, FFQs are
typically inaccurate in comparison with other techniques. This is
often a result of several factors including incomplete lists of food,
poor user compliance, errors in recording frequency, and errors in
recording serving size [9].

3.2. Automated methods

Recent research has been developed that use a watch-like
configuration of sensors to track wrist motion throughout the
day to automatically detect periods of eating [10]. While this work
shows promise, it does not capture people that eat and drink with
two hands (92% of food bites with the dominant hand but only 57%
of liquid bites), and also has a high false positive rate (one per five
bites).

Swallows could also be detected as a sign of food intake.
However, current systems detecting swallowing maintain a depen-
dency on bulky and potentially unsafe equipment (video fluoro-
scopy) and invasiveness (subcutaneous EMG) [11]. Some recent
works suggest the use of throat microphones as a means of
acquiring audio signals from throat and extracting swallowing
sounds afterwards [12,13]. In a promising work by Amft et al. [14],
authors analyze bite weight and classify food acoustically from an
earpad-mounted sensor. However, as other acoustic methods, this
system may not be practical in environments with high ambient
noise. Analyzing wave shape in time domain [12] or feature

extraction and machine learning [15] has resulted in an 86%
swallow detection accuracy in an in-lab controlled environment.
Some studies have reached accuracy rates of 91.7% in an in-lab
controlled environment using neural networks with false positives
of 9.5%. A more recent study using support vector machines have
been able to reach swallow detections of up to 96.7% in an in-lab
setting [11]. However, these devices are mounted very high up in
the top part of the trachea, near the larynx. Such positioning of a
device is quite uncomfortable to wear throughout the day.

Many prior works have attempted to detect swallow disorders
using inertial sensors. The work by Toyosato et al. in [16] used a
piezoelectric pulse transducer to detect food bolus passage
through the esophagus. In [17], Ertekin et al. used piezoelectric
sensors to evaluate dysphagia symptoms in a study with thirty
normal subjects and 66 dysphagia patients. The authors concluded
that piezoelectric sensors can be applied successfully towards
objective evaluation of oropharyngeal dysphagia. Another example
is our prior work in nutrition monitoring in [18], in which we
propose monitoring eating habits by placing a piezoelectricc
sensor in the lower trachea. In [19], Miyaoka et al. used piezo-
lectric sensor signals were able to detect the volume of tea
swallowed based on the waveforms acquired from the sensor,
after GLM-ANOVA analysis. Though the application did not relate
to nutrition monitoring, this work is significant because it shows
that food volume can be inferred from a piezoelectric sensor.

4. Hardware and sensors

In this section, we describe the hardware and software com-
ponents of our system.

4.1. Piezoelectric sensor

A piezoelectric sensor, sometimes known as a vibration sensor,
produces a voltage when subjected to physical strain. By placing a
piezoelectric sensor against the throat, the motion of the skin
during a swallow is represented in the output of the sensor, when
sampled at frequencies as low as 5 Hz. During a swallow event,
muscular contractions result in motion of the skin, which pushes
the vibration sensor away from the body and towards the inside of
the necklace, generating a unique output voltage pattern, as
shown in Fig. 1. The piezoelectric sensor was integrated into our
system by connecting the positive terminal to the microcontroller
board's GPIO pin, which is internally connected to a 12-bit analog/
digital converter. The other terminal of the sensor is connected
directly to ground on the microcontroller board. Amplification of
the piezoelectric signal was not required due to the relatively high
voltages produced by the sensor.

The piezoelectric sensor used is the LDT0-028 K, which consists of
a 28 μm PDVDF polymer film laminated to a 0.125 mm substrate,
which produces voltages within standard CMOS input voltage ranges
when deflected directly. The necklace can operate under conditions
ranging from 0 to 85 1C. The LDT0 is available with added masses at
the tip, which reduce the resonant frequency but can greatly increase
the sensitivity of the device. In the configuration without an added
mass at the tip, the baseline sensitivity is approximately 50 mV/g,
with sensitivity at resonance of 1.4 V/g [20].

4.2. Necklace

Our necklace features a thin, lightweight piezoelectric vibration
sensor attached to the inside of the necklace, along with a small
microcontroller board capable of sampling the sensor and trans-
mitting the data to a mobile phone via Bluetooth. The hardware is
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powered by a lightweight lithium-polymer battery or a simple 3 V
coin battery.

The necklace is available in several varieties, the first of which
is a sportsband style. The advantage of this design is the increased
sensor stability, as the neckband prevents excessive lateral motion
that can introduce errors (false positives) in swallow detection.
However, due to the cumbersome design, the sportsband is best
suited for algorithm evaluation, data collection, and clinical
environments where appearance is of secondary importance.
Otherwise, the pendant-based design shown in Fig. 2 may be
more appropriate for daily use.

Because the piezoelectric sensor generates a voltage in response to
physical strain, tightening the necklace excessively such that motion
is restricted has a negative on sensor accuracy; the necklace is
designed to be worn loosely and comfortably, only sufficiently tight
such that the sensor barely remains in contact with the skin.
However, the primary challenge associated with the pendant-based
design is that it may not stay attached to the skin as a result of various
motions. For example, walking, running, or vigorous turns of the head
may make the necklace change position and no longer be in contact

with the lower neck. To avoid false positives, we propose using an
accelerometer mounted to the left of the piezoelectric sensor, which is
used to detect extraneous motions and prevent recordings of false
nutritive swallows. The details of this algorithm are described in
subsequent sections. Another more pertinent concern is how to
ensure that users who wear the pendant design are placing them
correctly on the neck, both initially after any possible change of
location induced by motion. One possibility will be to require the user
to perform a simple calibration before each meal, which could be to
take several sips of water. Once the magnitude of the peak described
in the algorithms section has reached a particular threshold, the user
could be notified that the necklace is correctly placed. Such schemes
will be evaluated in our future work.

Waveforms collected from necklace configurations of various
tightness are shown in Fig. 3. Nevertheless, Fig. 4 shows a more
low-profile design based around a pendant, that may be more
acceptable for daily use. The intention of the pendant design is to
allow relatively inconspicuous monitoring of an individuals eating
habits. Though it is unlikely that every individual is comfortable
wearing such a necklace in public, this is a step towards the
miniaturization of a necklace-based nutrition monitor, and more
quantitative evaluation of user acceptance is left to a future work.

4.3. Microcontroller board

The recently released RFDuino board samples the voltage of the
vibration sensor at a rate of 20 Hz, converting the voltage to a
digital signal using the on-chip A/D converter. The data is then
buffered and transmitted to a mobile phone. This Arduino-
compatible board is easily programmed, very compact, and fea-
tures a Bluetooth 4.0 LE transceiver on-board, based on the
RFD22301 SMT module. The embedded processor is an ARM
Cortex M0 with 256 kB of flash memory and 16 kB of RAM. This
board was specifically selected because of its ease of use and
integrated CPU/BTLE transceiver in the same package. This made a
pendant-based necklace design much more practical due to its
relatively compact dimensions.

4.4. Accelerometer

The specific accelerometer used in our evaluation is the Xtrinsic
MMA8452Q 3-Axis 12-bit digital accelerometer from FreeScale
semiconductor, which supports output data rates from 1.56 Hz to
800 Hz and has a sensing range of 3 g. The board is mounted onto
the necklace fabric itself, approximately 2 in to the left of the
vibration sensor, and draws approximately 320 μA of current. In
our application, the output sample rate was limited to 20 Hz,
which was a decision motivated by a system requirement of high
battery life. The device was directly connected to the GPIO inter-
face of the microcontroller board, and because the sampling rate
was identical to the piezoelectric sensor, synchronization of the
two signals not a major concern – accelerometer sampling
immediately preceded the vibration sensor sample, both of which
were transmitted immediately to the mobile application for
processing.

5. Algorithm design

5.1. Swallow identification

A swallow event creates physical stress on the piezoelectric
sensor, which is manifested in a voltage measured by the micro-
controller board. The swallow detection algorithm processes the
original piezoelectric sensor waveforms in order to decouple the
peaks of the waveform from the effects of drift and noise. This

Fig. 1. This figure describes how the original sensor data is processed into a form in
which swallows are easily detectable. Raw data (top) is sampled from the piezo-
electric sensor, and a smoothing function is applied. Then, a sliding window is used
to compute the standard deviation of the data set (center). After more smoothing
and filtering, a thresholding technique is applied (bottom) and the peaks are
identified.

Fig. 2. The necklace used for data collection is shown above.
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signal transform is first achieved by generating a new waveform
using a sliding-window average of the original data. After a
moving-average representation of the data is generated, each data
point is assigned a numerical value with respect to the difference
between its original value and average in the previous window.
This essentially removes the offset from the data and combats the
effect of drift, while preserving the critical features of the original
waveform.

This procedure can be used to simplify the analysis of many
relatively stable waveforms with occasional perturbations or
spikes, as shown in Fig. 5. The raw values shown on the left of
this figure are caused by moving the accelerometer several times,
which causes spikes in each axis. By using the moving average
representation, the Y-axis offset can be removed, which facilitates
an objective comparison between waveforms.

The top figure is the raw waveform acquired from the vibration
sensor over time, at a rate of 20 Hz. The noticeable dips in the
waveform generally correspond with swallows. The data is then
smoothed using a moving-average low-pass filter with a span of 5,
to reduce the impact of oscillations and noise that are unrelated to
swallowing. Subsequently, a sliding window of length 9,

corresponding with 0.45 s of data, is applied with a maximum
overlap (shifted one point at a time). This was experimentally
determined to be optimal for preserving the critical features of the
waveform. Within each window, the average voltage from the
vibration sensor is calculated. Subsequently, the standard devia-
tion of each point within the window is calculated. Algorithm 1
shows a simplified version of this procedure, which was imple-
mented on the mobile phone, and is used to detect swallows based
on data from the vibration sensor.

Algorithm 1. Swallow detection algorithm.

Smooth(Data);
for i¼1:Window:Size(Data) do
avg¼ CalculateAverageðData½i� : Data½iþWindow�Þ;
forj¼ i : iþWindowdo
diff ¼ absðavg�Data½i�Þ
if diff othreshold then
jdiff ¼ 0;
else
⌊data½i� ¼ diff ;

6666666664

6666666666666664
for i¼1:Size(Data) do
if Data½i�40 then
SwCountþþ ;

i¼ iþ Jump;

$666664

The last step in swallow detection is to count the number of
peaks in the waveform, followed by a period of disabled detection
after each swallow to “debounce” the sensor from false-positives
caused by noise resulting from a single swallow that may be
mistaken for multiple. The parameters used in algorithm design
were derived using MATLAB simulations for optimality. Half of the
data was used for training and the other half of the data set was
used for evaluation. The algorithm can perform well at a variety of
window sizes ranging from 3 to 23, but is much more sensitive to
the threshold of 180 mV, which is inherently a property of the
piezoelectric sensor in the experimental configuration.

5.2. Feature extraction

Because the piezoelectric sensor is capable of detecting motions
beyond swallows, the detection of consistent chewing between
swallows is a reliable indicator that a solid food is being consumed,

Fig. 3. This figure shows the impact of necklace tightness on the clarity of the signal, for the necklace with the piezoelectric sensor.

RFDuino
Microcontroller 

BTLE Transceiver

Piezoelectric 
Vibration Sensor

Coin Battery 
(CR2032)

Fig. 4. The pendant form of the necklace is shown above. Though this design lacks
the stability of the neckband, it may be more practical for daily use due to its low-
profile.
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while several swallows (especially if they are in rapid succession) with
no chewing detected between may indicate that a liquid is being
consumed. Fig. 8 illustrates three primary features which can be used
to differentiate solid and liquid foods, by comparing waveforms
corresponding to a glass of water (top) and chips (bottom).

The most critical indicator that the food being consumed is a
liquid is the absence of vibrations corresponding with chewing,
between swallows. Furthermore, swallows corresponding with
liquid foods are typically sharper and higher in magnitude. The
impact of chewing on sensor data is shown in Fig. 9, which shows
that data acquired from solid foods has much more intra-swallow
variation compared to liquids, which are much more consistent.

For each swallow event, the standard deviation of data between
the current and subsequent swallows was extracted in cases when
the time ΔT was between 1 and 15 s. This time period was
selected in order to filter out errors caused by noise. For example,
there could be two swallows reported for one actual swallow.
Furthermore, there is no guarantee that the user is chewing
between swallows – the probability decreases as the time interval
between swallows increases past a certain threshold. Similarly, the
magnitude of each peak (after normalization) was extracted for
classification.

5.3. Window selection for classification

In order to develop the classifier for various motions, a training
set is used in which the subject annotates the data by pressing
a button on a mobile phone while performing the activity. For
example, by pressing a button on each step, the time at which a

Fig. 5. This figure shows accelerometer data corresponding with various motions, and how the waveform processing can be substantially simplified by smoothing
and calculating the standard deviation between a particular point and its neighbors.

Fig. 6. This figure shows the architectural components of the system, as well as the
neckband design. This design is best suited towards clinical applications; though it
reduces the impact of extraneous noise compared to the pendant design, it may not
be practical for daily use.

Data Collection
(Accelerometer)

Activity 
Recognition

Swallow 
Detection

Classification

Data 
Collection

(Piezo)

Fig. 7. This figure shows the system flow to detect movement patterns and
perform swallow classification while eliminating false positives.

Magnitude Between
Swallows (Chewing)

Magnitude 
of Swallow

Water

Chips

Time Between
Swallows

Fig. 8. Several features are used to classify between solid and liquid foods. The
strongest heuristic is the detection of chewing between swallows, as indicated by
the relatively shallow troughs visible in the bottom waveform, compared to the
more prominent spikes associated with liquid consumption noticeable in the top
waveform.

Fig. 9. A feature that can be used to detect solid and liquid foods is the standard
deviation of the data between swallows, which is indicative of chewing.
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step is taken is noted in the log file. This allows some uniformity
between the centering of each extracted window, which is then
classified based on the motion detected. A window size of 1 s was
selected, which corresponds to 20 samples from the piezoelectric
sensor and vibration sensor respectively. This was chosen because
the window is large enough to capture distinguishing features
from all classified motions when centered appropriately.

5.4. Activity recognition

Several movements not associated with eating or drinking can
produce distinct waveforms, as shown in Fig. 10. Motions such as
head turns, walking, and running can affect the quality of the data
inadvertently, as the data is acquired from the vibration sensor
and transmitted to mobile phone. To reduce the impact of these
motions on accurate profiling of an individual's eating habits, it is
necessary to extract features from these motions and apply
classifiers. In this section, we present a framework from identify-
ing non-eating movements using several techniques, in order to
reduce the rate of false positives during swallow detection. Fig. 11
presents several possible approaches.

One approach is to create new classes for data acquired from
the vibration sensor, for motions such as walking, speaking, and
turning the head. However, this would decrease the true positive

rate of detection since there would be more categories to mis-
takenly classify a swallow. Furthermore, the design of the necklace
is to detect motion from the neck rather than the rest of the body,
which suggests that the vibration sensor is not suitable to identify
these motions. Therefore, a second approach is to use a small
accelerometer placed on the fabric of the necklace, which unlike
the piezoelectric sensor, is positioned to detect motion of the
upper body rather than motion in the skin of the lower throat. A
third approach is to use both sensors in various configurations to
detect motions. Our selected approach is to use the accelerometer
exclusively for detecting non-eating related motions, to use the
vibration sensor for detecting food intake.

Both the tri-axial accelerometer and piezoelectric sensor act as
inertial sensors; the piezoelectric sensor could be modeled as a
1-D accelerometer. However, these two devices but work differ-
ently due to their placement. The skin motion during a swallow is
quite small and requires very high sensitivity. Therefore, the long
and thin design of a piezoelectric strip very well suited for this
application, in which the necklace clamps the sensor to the skin
and causes it to bend slightly during a swallow. However, these
swallow-related motions do not register noticeably on the wave-
form acquired by the accelerometer. This can be seen in Fig. 12,
which shows 300 samples from the piezoelectric sensor and
accelerometer (corresponding with 15 s of data), as one individual
drank a small glass of water with five swallows in total. As this
figure shows, the peaks produced by the ingestion of water are
relatively pronounced in the piezoelectric sensor data, while the
accelerometer data shows no clear pattern.

Because the piezoelectric sensor is not designed for detection
of movements in three dimensions, it is more sensitive to
swallows than head motions in our application. By contrast, lateral
head movements not associated with swallowing are much more
pronounced, and can be detected by placing an accelerometer
almost anywhere along the necklace. The triaxial accelerometer is
specifically designed to detect motion along three dimensions, but
is not suitable for placement directly against the skin to detect
swallows. A model in which the accelerometer and piezoelectric
sensor data are both used is defined in (1), in which Cacl is the
output of the accelerometer classifier while Cvib is the output of
the piezoelectric-sensor classifier. Both sensors classify between

Fig. 10. This figure shows the corresponding signal of various movements not associated with ingestion, for the necklace with the piezoelectric sensor.

Feature 
Extraction Classification

Feature 
Extraction

Feature 
Extraction

Feature 
Extraction

Classification

Sensor 
Fusion

Classification

Swallow 
Detection

Fig. 11. This figure describes the sensor fusion model for detecting extraneous
motion in the described system.
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different types of motions, with no overlap

CaclAfLookUp;Walk; Turn;Noneg
CvibAfChew; Swallow;Noneg
CaclaCvib ð1Þ

The system makes the simplifying assumption that a user will
not be performing a movement based activity, i.e. walking or
running, while eating. Therefore, the final activity class for a
particular window of time, Cfinal, is assigned based on the follow-
ing piecewise function shown in Eq. (2). In summary, the proposed
algorithm ensures that a swallow is detected from data acquired
from the vibration sensor, only if the data from the accelerometer
shows that the user is not performing an activity commonly
mistaken for a swallow: rapid head turn in the horizontal or
vertical direction, or walking

Cfinal ¼
Cvib : CaclAfNoneg
None : CaclAfTurn;Walk; LookUpg

(
ð2Þ

The classification of these motions is conducted based on
several key features: harmonic mean, geometric mean, standard
deviation, kurtosis, skewness, and mean-absolute deviation. These
features were extracted from the windows corresponding with
these activities, using the same window size as the swallowing
samples for objective comparison. These features were imported
into the WEKA data mining software, which can report classifica-
tion accuracy using various classifiers. A Naive Bayesian classifier
was used to label the data using leave-one-out cross validation. As
in the case of the swallows, the user annotated his actions
manually during the data collection, using a button on the
application which labeled the data when pressed.

6. Experimental procedure

6.1. Vibration sensor data collection

Data was collected from a total of 30 subjects ranging from 22
to 34 with a median age of 23. The participants consisted of 25
men and 5 women. The consumed foods included: one quarter of a
standard triangle-shaped chicken-salad sandwich on white bread
(available at most convenience stores), a small handful of potato
chips, and an 8 oz. glass of water. These foods were specifically

chosen to represent a wide variety of textures, ranging from
crunchy, chewy, and liquid. The subjects were seated at an office
desk while eating, and were asked to refrain from unnecessary
body motion, beyond what would be typical in the average meal.
Each subject annotated the times at which he or she swallowed by
pressing a button on the Android application which logged
the data.

For each subject and food type, the piezoelectric sensor was placed
in six different locations on the throat. This was necessary to identify
the regions of the neck which produced the clearest signal. To ensure
consistency in how the necklace was oriented and tightened, subjects
were guided through the setup process every time. Furthermore, the
sports band on which the sensor was mounted ranged from loose to
firm, in order to find the right balance between comfort and detection
accuracy. The necklace used in data collection was of the sports-band
variety rather than a pendant style due to its durability. However,
preliminary results suggested the efficacy of either design in a
controlled environment.

6.2. Accelerometer data collection

A total of five subjects were asked to perform three activities
while wearing a necklace similar to the one before, but with a
triaxial accelerometer mounted 2 in to the left of the piezoelectric
sensor. The subject's necklaces were paired with an Android
device which collected the data. Unlike the real-time implementa-
tion of the piezoelectric-based detection described earlier, accel-
erometer data was collected live, but processed offline. Once the
data was collected, accelerometer data was written to a log file on
the Android phone, annotated by the user by pressing a button
while performing the motion. At times, the annotation in the log
file was corrected in order to ensure objective comparison
between different activities. This was necessary because actions
such as walking and speaking do not have a clear center, as in the
case of a swallow.

Each subject was asked to perform three activities. These
activities were walking for approximately 1 min at a normal pace,
moving their head horizontally to the left, and looking up at
approximately a 451 angle. These activities were selected because
of their frequency in day-to-day life, as well as our observation
during earlier experimentation that these motions were often
misclassified as swallows. The activities were performed in the

Fig. 12. This figure shows the piezoelectric sensor signal as the subject drank water (five swallows), as well as the corresponding accelerometer signals. It can be seen that
the piezoelectric sensor is much more suitable for the identification of ingestion, based on the placement of the device several inches away from the trachea.
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following order: walking, horizontal movement, and vertical
movement. The activities were repeated five times each, which
yielded 50 windows per activity and 150 windows in total. After
each data collection, the accelerometer and piezoelectric sensor
log files were labeled according to the time of the data collection.

7. Evaluation

7.1. Detection of swallows

Fig. 13 shows the accuracy of swallow detection for three
different food types. The percentage accuracy for chips, water,
and sandwiches were 85.3%, 81.4%, and 84.5%, respectively. In this
case, we define accuracy as the percentage of swallows correctly
identified, because the algorithm was not evaluated on other
activities that may be mislabeled as swallows.

7.2. Classification

Table 1 shows the accuracy of vibration sensor classification
between solid and liquid foods. Best results were achieved using a
naive Bayes classifier, which enabled us to identify liquids with an
F-measure of 0.837% and solids with an F-measure of 0.864%. The
presented results are based on leave-one-subject-out cross valida-
tion. Precision, recall, and other relevant terms used in this paper
are defined in Eq. (3). As this table shows, the recall corresponding
with the liquid class is rather low, at 79.4%. In other words, in cases
when the classifier reported that a liquid had been swallowed, the
food was often a solid. One possible explanation for this is the
relatively high variety in the eating patterns of different indivi-
duals. For example, some subjects preferred to chew the food
excessively before swallowing, while others ate at a much quicker
pace. Significant variations were also noted in the same subject
during different days, while eating the same food. This suggests
that eating patterns are dependent on a multitude of factors such
as satiety, mood, time of day, and environment. To improve the
recall of the liquid class, it may be necessary to extract more
features with respect to the characteristics of the associated pulse,
rather than stressing the frequency of swallows and the amplitude of the signal which appears to vary significantly based on the

tightness of the necklace.

Precision¼ tp
tpþ fp

Recall¼ tp
tpþ fn

F�measure¼ 2 � Precision � Recall
PrecisionþRecall

Accuracy¼ tpþtn
tpþtnþ fpþ fn

ð3Þ

7.3. Activity recognition using the accelerometer

Fig. 14 shows waveforms acquired from the accelerometer
(20 Hz) corresponding with horizontal and vertical head turns,
as well as walking, in all three dimensions. As shown on these
graphs, walking produces peaks in the X, Y, and Z axes on each
step. Furthermore, horizontal and vertical head turns cause peaks
in the Z and Y dimensions respectively, with relatively little
activity on the other two axes. Of note is the similarity between
these waveforms and those acquired from the vibration sensor.
Therefore, peak detection in the X, Y, and Z domains can be used to
identify these extraneous motions and disable swallow detection
during these intervals.

Table 2 shows the results for activity recognition using the
accelerometer. About 84% of head turns (horizontal), 80% of head

79 80 81 82 83 84 85 86

Chips

Sandwich

Water

Fig. 13. Accuracy of detection by food type (in percent).

Table 1
Confusion matrix using a Naive Bayes classifier.

Actual class Predicted class Precision (%)

Solid Liquid

Solid 32 8 84.2
Liquid 4 31 88.5
Recall 88.8% 79.4%
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Fig. 14. These graphs show waveforms acquired from the accelerometer (20
samples/second), for several movements typically misclassified as swallows in
vibration sensor data.
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turns (vertical), and 88% of steps were detected correctly based on
a total of 150 collected samples. Without the accelerometer, these
motions were frequently mistaken for swallows: 18% of left turns,
46% of vertical head motions, and 8% of steps were misclassified as
swallows. Using accelerometer data to temporarily disable detec-
tion during these activities allowed us to substantially reduce our
rate of false positives. This was able to reduce our false positive
rate to 6%, 14%, and 2% for left turns, vertical motions, and steps,
respectively.

It may not be practical to infer eating habits when an individual
is walking briskly and simultaneously eating, because swallow
detection is disabled during these periods. However, the majority
of large meals are not eaten during periods of motion. Reducing
the false positive rate of swallow detection is much more critical to
accurate assessment of eating habits than further increasing the
true positive rate. This is because most individuals spend a
relatively small part of their day eating, compared to the variety
of other motions and activities. Nevertheless, further investigation
is warranted into decoupling physical activity-induced artifacts
from the swallowing-related signals acquired from the piezo-
electric sensor.

7.4. Sensor placement

It was determined through extensive experimentation that the
accuracy of swallow detection increases substantially as the
vibration sensor is moved toward the lower region of the throat,
compared to the mid-throat and the upper region, as shown
in Fig. 15. Fig. 15 shows the relative accuracy of swallow detection
with respect to the location of the neck on which the vibration
sensor was placed, based on data collected from 10 subjects.

7.5. Sensor band tightness

The necklace was placed in three different configurations:
comfortable, tight, and loose. Typically the loose configuration
allowed only intermittent contact between the vibration sensor
and neck. The tight configuration was typically described as too
uncomfortable to be worn for more than a few minutes at a time.
In the loose configuration, the back of the fabric necklace could be
stretched back approximately 3 cm from the back of the neck. The
”comfortable” configuration could be stretched approximately
1.8 cm from the back of the neck, which is approximately one
index finger width for the average adult. The corresponding tight
necklace configuration value was 1 cm.

Results revealed that tightening the necklace restricts the
movement of the piezoelectric sensor, and decreases the sensitiv-
ity of detection such that swallows are barely visible on the
waveform. Furthermore, the loose configuration's lack of move-
ment restriction causes significant fluctuation in the data which
was rendered unusable. Experiments reveal that the necklace
must be fastened for the piezoelectric sensor to typically remain
in contact with the skin, but sufficiently loose such that its
movement is not completely restricted by the tension of the
sports band.

8. Conclusion

In this paper, we describe a low-cost, wearable sensor system
in the form of a necklace with an embedded piezoelectric sensor.
The necklaces is capable of detecting food consumption and
transmitting the data to a mobile phone for analysis. Results show
that food can be classified between solid and liquid categories
with high accuracy, and the proposed algorithm correctly identi-
fies most swallows. The system and software described in this
paper were designed with the primary goal of making individuals
more aware of their eating habits, which we believe is critical for
weight loss.
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