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Abstract— Food intake levels, hydration, ingestion rate, and
dietary choices are all factors known to impact the risk of obesity.
This paper presents a novel wearable system in the form of a
necklace, which aggregates data from an embedded piezoelectric
sensor capable of detecting skin motion in the lower trachea
during ingestion. The skin motion produces an output voltage
with varying frequencies over time. As a result, we propose an
algorithm based on time-frequency decomposition, spectrogram
analysis of piezoelectric sensor signals, to accurately distinguish
between food types, such as liquid and solid, hot and cold
drinks, and hard and soft foods. The necklace transmits data
to a smartphone, which performs the processing of the signals,
classifies the food type, and provides visual feedback to the user
to assist the user in monitoring their eating habits over time.
We compare our spectrogram analysis with other time-frequency
features, such as matching pursuit and wavelets. Experimental
results demonstrate promise in using time-frequency features,
with high accuracy of distinguishing between food categories
using spectrogram analysis and extracting key features repre-
sentative of the unique swallow patterns of various foods.

Index Terms— Nutrition monitoring, wearable necklace,
spectrogram analysis, piezoelectric sensor, machine learning,
classification.

I. MOTIVATION AND BACKGROUND

HEALTHY eating is associated with reduced risk
for many diseases, including several of the leading

causes of death: heart disease, some cancers, stroke, and
diabetes [1]. The development and the incorporation of wire-
less technologies has the potential to address our ultimate goal
of enabling healthier lifestyle choices and behavior modifica-
tion needed to prevent obesity and obesity-related diseases.
Much of the wireless technology developed and used in the
market, however, focuses primarily on exercise and physical
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activity [3], [4], [6], [7], [15], [32]. In this paper, we describe
a novel system that attempts to infer eating patterns from a
device disguised as a necklace.

Automatically and accurately recognizing the type of food
in a non-intrusive manner has been for the most part an
unaddressed challenge. Most of the current technologies for
eating pattern detection are either inaccurate or exhibit low
rates of adherence to using the technology, due to one or
more of these shortcomings: 1) they infer eating indirectly
from, for example, hand movements or food images [10], [37];
2) they require manual data entry or user involvement in
capturing data [19]; or 3) they are non-wearable, bulky,
invasive, or semi-invasive [11]. There is a need for a system
that is non-invasive and detects individual’s eating patterns,
and provides necessary guidance and feedback to the user
(see Figure 1). Such a system represents a significant advance
in researchers’ ability to evaluate the combined impact of
adherence to dietary guidelines.

Current systems either have low accuracy in detecting
swallows and distinguishing food types, or must be uncom-
fortably worn around the neck, which renders continuous use
impractical [8]. In this paper, we focus on a piezoelectric-
based design of a necklace that is not worn tightly around the
neck, but rather hangs loosely and falls more naturally right
above the sternum [5], [20], [21], [23], [24].

Equally critical to detecting eating episodes is determining
whether calories are consumed in solid or liquid form. Studies
show reduced ability of the body to compensate properly
when calories are consumed in liquid form compared to solid
form [30], with the result that some health recommenda-
tions now explicitly recommend restrictions on liquid calories
consumed (e.g., 2007 report by the World Cancer Research
Fund [16]. The proposed system will enable individuals to
track the amount of solid vs. liquid consumed throughout
the day.

This paper is organized as follows. Related works are
described in Section II. In Section III we describe the
nutrition monitoring necklace. Then we describe our method
of differentiating food types using spectrogram-based
feature extraction and classification algorithm in Section IV.
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Fig. 1. Monitoring eating habits is essential to promoting healthy lifestyle
behavior. In a fast-paced society, some common bad eating habits include
eating too fast, skipping meals, not eating enough, and being dehydrated.
Having a non-invasive automated method of detecting bad habits can be a
means of changing negative habits into positive ones.

We present our experimental setup in Section V, and results
in Section VI. We conclude in Section VII.

II. RELATED WORK

Various sensors have been employed to identify the volume
of food being consumed, and among the most popular methods
is acoustic detection [22]. Several systems have identified
chewing and swallowing acoustically by placing a microphone
near the throat, and using signal processing techniques for
classification. For example, Sazanov et al. [35] uses acoustic
data acquired from a small microphone placed near the bottom
of the throat. However, their system is coupled with a
strain gauge placed near the ear which is not practical for
daily use. Similarly, Nagae et al. [33] attempts to distin-
guish between swallowing, coughing, and vocalization using
wavelet-transform analysis of audio data. Though results are
promising, this technology is targeted towards those who suffer
from dysphagia, and identifying the volume or characteristic
of food intake is not the focus of their work.

Aboofazeli et al. [2] present another approach to acoustic
swallow detection, achieving basic classification between
swallows and breath sounds using a feedforward neural
network classifier. A manual inspection of their classification
results is performed using a spectrogram, which is a basis
for the feature extraction technique for food classification
used in our work. Makayev et al. apply spectrograms for
swallow detection using machine learning algorithms [27],
though once again, no classification is performed, and their
analysis is limited to identifying swallows. Ultimately, acoustic
detection of food intake is promising, but suffers from several
serious drawbacks including the interference of background

noise, a lack of uniformity between individual eating styles,
and no prior work validating the feasibility of classification
between different types of food.

Several other methods for detecting swallows have been
explored. Amft et al. [9] performs detection of eating
and drinking by identifying associated arm gestures using
accelerometers and gyroscopes. For example, the use of
cutlery, spoon, hand, and cup can be identified based on
the gestures associated with food intake using these objects.
However, the eating style does not necessarily reveal the
volume of food intake, which severely limits the usefulness
of this approach. Other works place electrodes on the neck
and perform an EMG to identify deglutition, but the hardware
is cumbersome and the system is limited to a clinical
environment [26].

Piezoelectric sensors, which produce an output voltage
corresponding with the mechanical stress applied to the body
of the sensor, are used in countless applications. Recently,
they have been applied to problems in the medical domain,
such as identifying individual heart beats and respiration [25].
Very few works describe attempts to use piezoelectric sensors
for monitoring food ingestion, with several exceptions [13],
though evaluation of dysphagia symptoms is the primary
objective of their work.

In this paper, we compare the accuracy of classification
techniques from a piezoelectric sensor worn around the neck
using statistical features extracted in the time domain to a
novel spectrogram-based approach which considers time and
frequency-based components in tandem. A spectrogram, often
used for speech recognition and other countless applications,
is a visual representation of the frequency spectrum over
time generated using a short-time Fourier transform (STFT)
with a fixed window size, the squared magnitude of which
yields the spectrogram. Spectrograms are used to visually
represent changes in the frequency spectrum over time, have
been applied to countless research problems pertaining to
the analysis of acoustic signals. Examples include speech
recognition, the identification of animal sounds such as
whale vocalizations, and pattern recognition in genome
sequences [12], [31], [36]. However, their utility in analyzing
piezoelectric sensor data has not been adequately explored.
The primary novelty of our work is the application of
spectrograms for analysis of piezoelectric sensor data in the
realm of detection and classification of food ingestion. In this
paper we collect statistical features on a spectrogram of
swallows to distinguish between solid and liquid foods.

III. NUTRITION MONITORING NECKLACE DESIGN

Our nutrition monitoring system comprises two main
components: piezoelectric-based sensor technology, and a
smartphone application that performs data processing, user
guidance, and feedback. The smartphone application performs
swallow detection, feature extraction and classification to
detect swallows. This section describes the sensor technology
and user guidance and feedback (See Figure 5). Section IV
will further discuss the classification algorithms implemented
on the smartphone. Figure 2 provides a component overview
of the system.
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Fig. 2. The essential components of the system. Besides the sensor
technology, the main challenges in designing the system involve swallow
detection and food classification. User guidance and feedback is also part of
the system and has the potential in being of great benefit to the user regarding
improving health.

Fig. 3. Circuitry diagram for the system.

A. Sensor Technology

A piezoelectric sensor, also known as a vibration sensor,
produces a voltage when subjected to physical strain.
By placing a piezoelectric sensor against the throat, the muscle
contraction and motion of the skin during a swallow is
represented in the output voltage of the sensor, when sampled
at frequencies as low as 5 Hz. Our necklace features a thin,
lightweight piezoelectric vibration sensor attached to the inside
of the necklace, along with a small microcontroller board
capable of sampling the sensor and transmitting the data to
a mobile phone via Bluetooth. The hardware is powered by a
lightweight lithium-polymer battery. Figure 4 depicts a subject
wearing the necklace, and further illustrates each component.

Figure 3 models the piezoelectric sensor as a nonlinear
voltage source when subject to mechanical excitation. The
data is smoothed using a 90nF filtering capacitor, and a small
resistor brings voltage levels to the valid input range of the
Analog/Digital converter unit (ADC). After sampling is com-
plete, the data is buffered into SRAM memory, processed, and
transmitted. The on-board ADC has a resolution of 10 bits and
can convert data at a rate of up to 257 kHz. The offset error,
gain error, and absolute error ratings are 1, 3, and 3 LSB volts,
respectively. The resolution of the ADC was therefore
approximately 15 mV, based on the supported input voltage
range. This was sufficient for the purposes of a nutrition
monitoring application, as swallows were typically associated
with a voltage spike of 50 mV or more. The hardware
platform supports an input voltage range of 1.8-3.6 volts. The
lithium-polymer battery used to power the device is a 3.7 volt

Fig. 4. This figure shows a subject wearing the necklace while working.
The necklace comprises the piezoelectric sensor, coin battery, MCU/RF board
and a fashionable cover, where the sensor is designed to be in contact with
the skin.

unregulated voltage source with a capacity of 170 lmAh and a
maximum discharge current of 1 Ampere at room temperature.

The necklace is available in several varieties including a
sportsband suitable for athletes and other active individuals,
and another targeted towards a more fashion-conscious
audience. Because the hardware components of the necklace
are very small and lightweight, they can be embedded in
several different form factors.

The microcontroller board samples the voltage of the
vibration sensor at a rate of 20Hz, converting the voltage to
a digital signal using the on-chip A/D converter. The data
is then buffered and transmitted to a mobile phone. This
Arduino-compatible board features a Bluetooth 4.0 LE trans-
ceiver on-board, based on the RFD22301 SMT module. The
embedded processor is an ARM Cortex M0 with 256kB of
flash memory and 16kB of RAM.

B. Device Battery Lifetime

The device battery lifetime depends on many parameters
including sample rate, battery capacity, Bluetooth connection
interval, and various algorithm parameters such as window
size and sample rate. A CR2032 coin-cell battery typically
has a capacity of approximately 235mAh. Our experimental
simulations reveal that a window size of 10 and a sample
rate of 20Hz results in a power consumption of .07 mW,
using the Nordic nRF simulation software and a low-power
MSP430 microcontroller. This would correspond with a device
lifetime of over 6 months. However, the hardware platform
used in this paper is not optimized for energy-efficient
applications, as the focus is aggregating data for offline
processing to evaluate our algorithms.

C. User Guidance and Feedback

This system includes a mobile phone application for data
reporting and visualization (see Figure 5). The application
displays the estimated liquid and solid volume of the current
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Fig. 5. Mobile application screens. The snapshot on the left shows a summary
of the users weekly food and beverage consumption. The snapshot to the right
provides a summary of habits for the user, some positive and others negative.

meal, as well as the daily and monthly total. A reporting tool
displays alerts to the user.

The mobile application uses the Bluetooth 4.0 LE protocol
to receive data from the necklace while maximizing battery
life. The data is then processed for swallow identification,
classification, and analytics. To ensure user compliance,
the application is able to detect when the necklace has
been removed, based on the observation that the average
individual swallows saliva periodically. Lastly, all collected
and processed data is uploaded to a secured cloud server for
patient tracking and statistical analysis.

IV. ALGORITHM

A. Swallow Detection

Figure 6 provides a summary of the algorithm implemented
on the mobile phone, which is used to detect swallows based
on data acquired from the vibration sensor and received
via Bluetooth. The data is buffered locally until a sufficient
number of samples have been acquired. Subsequently, a sliding
window is applied to generate a new waveform representing
the standard deviation of the original data. The swallows are
represented in the resulting waveform as peaks, while they may
correspond to either peaks or troughs in the original data.

The algorithm then proceeds to smooth the waveform by
applying a Savitzky-Golay convolution filter to increase the
signal-to-noise ratio without distorting the signal, which yields
clearly visible peaks representative of each original swallow,
while removing noise from the signal [34]. Subsequently,
the number of swallows can be identified by counting the
number of peaks, provided there is sufficient spacing between
swallows.

B. Spectrogram

Once a swallow is detected, a spectrogram is generated
centered around each swallow. The spectrogram is calculated
from the time signal x(t), as shown in Equation 1 using the
short-time Fourier transform (STFT).

ST FT {x(t)} ≡ X (n, ω) =
∞∑

t=−∞
x[t]ω[t − n]e− jωt . (1)

Fig. 6. This figure shows the swallow detection process, whereby a sliding
window is applied to the signal to generate a waveform representing the
standard deviation of the signal, after smoothing, peaks are detected and
identified as potential swallow regions.

x(t) is multiplied by a window function for a short period
of time. The data is divided into frames Fi , which overlap.
Each frame is Fourier transformed, and the result is added to
a matrix that records the magnitude and phase of each point
in time and frequency.

The spectrogram is the resulting 3-dimensional plot
of the energy of the frequency content of a signal as it
changes over time [14]. For our window function, we
used different values; for the Hamming window we tried
lengths of w = 32, 64, and 128, with an FFT length of
n f f t = 32, 64, and 128, and an of overlap of 25%, 50%,
75%, and no overlap. We set the dynamics range to 50dB.
Figure 7 provides an illustration showing a sample swallow
spectrogram for three food types (water, chips, and sandwich).
Each spectrogram is defined by a matrix P ∈ Rm×k , where
m is the number of bins in the time domain, and k is the
number of bins in the frequency domain. P represents the
power spectral density.

The distinguishing attributes of these piezoelectric signals
are visible. For example, chips and sandwich swallows contain
more high frequency components than water swallows due
to the effect of chewing. Distinguishing between chips and
sandwich swallows, though significantly more challenging, is
captured by our statistical feature extraction methodology.

C. Feature Extraction

Once a spectrogram for each swallow is generated, we found
an optimal division of the spectrogram images into 14 bins
along the frequency domain and another 16 bins along the
time domain, for a total of 30 bins. We then calculate statistical
features on each bin, to generate a feature vector Vi for each
swallow. Table I lists the main features that were calculated
for each bin, which generates a total of s = 360 features per
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Fig. 7. (a) Shows the spectrogram over a 3 second window of water. (b) and (c) Shows the spectrogram for chips and sandwich. The distinction between
water and solid is captured in the spectrogram. However, the difference between chips and sandwich is more challenging, and the statistical features collected
from the spectrogram images is capable of learning the difference.

TABLE I

FEATURE TABLE

spectrogram swallow. We generate a matrix B which contains
all n samples for each spectrogram Pi .

B = [V1, V2, ...., Vi , ..., Vn]

=

⎡

⎢⎢⎢⎣

v11 · · · v1s

v21 · · · v2k
...

. . .
...

vn1 · · · vns

⎤

⎥⎥⎥⎦ (2)

where vi, j represents the j t h feature of the i t h sample.

D. Feature Selection and Classification

The conventional feature selection algorithms usually focus
on specific metrics to quantify the relevance and/or redun-
dancy to find the smallest subset of features that provides
the maximum amount of useful information for prediction.
Thus, the main goal of feature selection algorithms is to
eliminate redundant or irrelevant features in a given feature set.
Applying an effective feature selection algorithm not only
decreases the computational complexity of the system by
reducing the dimensionality and eliminating the redundancy,
but also increases the performance of the classifier by deleting
irrelevant and confusing information.

The two well-known feature selection categories are the
filter and wrapper methods. Filter methods use a specific
metric to score each individual feature (or a subset of features
together), and are usually fast and much less computationally
intensive. Wrapper methods usually utilize a classifier to
evaluate feature subsets in an iterative manner according to
their predictive power [17]. We applied the wrapper method,
testing on multiple combinations of feature subsets and clas-
sifiers including: kNN, Bayesian Network, Random Forest.
We reduce the dimensionality of the features from s = 360
to l, where l depends on the feature selection algorithm used,
however we limit it to l = 30. The optimal feature extraction,
feature selection and classification combination is selected

to run in real time. We then divide each data sample into
training and testing samples. Figure 8 provides an illustration
of the system architecture, where an optimal feature subset
and classifier is trained to distinguish between food types.

V. EXPERIMENTAL SETUP

Two experiments were performed to validate the efficacy of
our algorithm in accurately detecting swallows and recogniz-
ing eating patterns. The first experiment involved 10 subjects,
and the second experiment included an additional 10 subjects
(for a total of 20 subjects). The two experiments are described
in this section.

Once a swallow is detected, we test the ability of our system
to classify swallows using features collected from three time-
frequency based algorithms including: Matching Pursuit with
dictionaries of Gabor functions [29], Morlet Wavelet (as it is
closely related to human perception, both hearing and vision)
with statistical features collected from its corresponding
scaleogram [28], and statistical features collected from a
spectrogram.

To prevent bias in the classification results between each
class label in the training set, we randomly select an equal
number of swallows across categories. We also perform
10-fold cross validation and report the results. We test each
classifier’s ability to distinguish between different food types.

A. Experiment 1

In the first experiment data was collected on ten subjects,
two female and eight male with ages ranging between
20 and 40 years of age. We placed the necklace around
their neck so that the sensor was loosely touching the skin.
The necklace tightness was adjusted such that each subject
was comfortable wearing the device. We placed the necklace
centered between their right and left clavicle right above the
sternum.

Each subject consumed two types of food: a tuna, egg, or
chicken sandwich on white bread, and a few pieces of Pringles
potato chips. Each subject selected which food type to start
eating or drinking first. The subjects were asked to consume
an 8 oz glass of water at room temperature. We ensured that
the portion sizes were identical from one subject to another.
The subjects were then asked to push a button every time they
swallowed; this helped us further annotate the data in order to
provide truth labels for the dataset.
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Fig. 8. System architecture.

B. Experiment 2

In the second experiment we increased the number
of subjects to twenty, eight female and twelve male,
ages 20 to 40 years. We also added hot tea as another food
type of liquid form. This enabled us to distinguish between
hot and cold drinks. The subjects each consumed 8 ounces of
room temperature water and 8 ounces of hot tea. They also
consumed two fun-sized snicker bars (Chocolate), a meat-like
veggie patty (Patty), and a handful of mixed nuts (Nuts).

In this experiment we compare the classifiers’ ability to
distinguish between liquid and solid as well as different
textures, temperatures, and consistencies.

VI. RESULTS AND DISCUSSION

The feature selection algorithm that consistently performed
best in combination with the classifiers was the Correlation-
based feature subset selection algorithm [18]. This method
evaluates the worth of a subset of attributes by considering
the individual predictive ability of each feature as well as the
redundancy between them.

A. Experiment 1

According to our classification results, using spectrogram-
based features on a signal from a piezoelectric sensor can
distinguish between liquid and solid swallows with higher
accuracy than Matching Pursuit and Wavelets (See Table II)
using the Random Forest Classifier (with n=100 trees), which
yielded the optimal results for all three experiments. Best
results were achieved using a window size of 32, an FFT
length of 32, and an overlap of 50%. Spectrogram-based
features consistently outperformed other methods and for this
reason we focus on spectrogram-based feature results.

In this experiment the Liquid class label is represented by
water, and the Solid class label is represented equally by chips
and sandwich. Using spectrogram analysis, the classifiers that
yielded the best results were using Bayesian Networks and
Random Forest Classifier (with number trees set to 100).
Using kNN, Bayesian Networks, and Random Forests we

TABLE II

TIME-FREQUENCY DECOMPOSITION RESULTS

TABLE III

CONFUSION MATRIX FOR EXPERIMENT 1 LIQUIDS VERSUS

SOLIDS UNDER RANDOM FOREST

achieved weighted average F-measures (the harmonic mean of
precision and recall) of 86.1%, 83.6%, and 91.2% respectively.
We provide the Random Forest (n=100 trees) confusion matrix
in Table III. The precision for Liquids is 91.7% which is higher
than the precision for Solids, which is 90.1%, but the recall
for Liquids is less than that of Solids.

We further analyze the classification algorithms ability
to distinguish between the two solid food types chips and
sandwich. The results still favor the Random Forest Classifier
with an F-measure of 75.9%, outperforming kNN and
Bayesian Networks by more than 5%. Table IV provides
the confusion matrix for the Random Forest Classifier, the
majority of the misclassification occurs between the Chips and
Sandwich class labels. The F-measure is approximately 76.6%.
As can be seen from the results, distinguishing between solids
is quite challenging, due to the large variation in swallow
and chew behavior across subjects. To estimate the effects of
this test run on distinguishing between solid and liquid food
types, Table IV provides the resulting Liquid/Solid precision
and recall values, which result in a 93.0% Solid precision and
recall.

While it may be challenging to distinguish a single
swallow of chips and sandwich, we wanted to find out if the
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TABLE IV

CONFUSION MATRIX FOR EXPERIMENT 1 DISTINGUISHING EACH

CATEGORY UNDER THE RANDOM FOREST CLASSIFIER

TABLE V

CONFUSION MATRIX FOR EXPERIMENT 1 DISTINGUISHING EACH

CATEGORY UNDER THE RANDOM FOREST CLASSIFIER

classification algorithm could distinguish between solids given
a fixed period in time. We calculated the spectrogram centered
around a swallow with a 20 second time interval. The optimal
results were provided using a window size of 128, FFT length
of 64, and an overlap of 50%. The results show great improve-
ment over single swallows, as shown in Table V, where the
Liquid and Solid precision is now set to 90.9% and 100%,
respectively, and the Liquid and Solid recall is 100%, and 95%,
respectively.

B. Experiment 2

In the second experiment the classifier that provided the best
results was also the Random Forest Classifier with number
of trees set to 100 (we tested n=10, n=50 and n=100).
The resulting confusion matrix is provided in Table VI.
The results again show the ability of the algorithm to
accurately distinguish between liquid and solids.

The Liquid class label precision and recall of
87.0% and 86.3%, respectively. The Solid class label produced
a high precision and recall of 86.4% and 87.1%, which further
affirm our findings that the collected spectrogram features are
good discriminants between liquids and solids. The Random
Forest Classifier resulted in a 86.6% F-measure compared to
77% and 78.1% F-measures of Bayesian Networks and kNN
(with k=3 yielding the best results), respectively.

When testing the ability of the algorithm to distinguish
between hot tea and water, our results show that the
Random Forest Classifier resulted in a 90% F-measure,
with a liquid precision and recall of 88.5% and 92.0%
respectively. The solid precision and recall is also high at
91.7% and 88.0%. Table VII provides the confusion matrix

TABLE VI

CONFUSION MATRIX FOR EXPERIMENT 2 LIQUIDS VERSUS

SOLIDS UNDER RANDOM FOREST CLASSIFIER

TABLE VII

CONFUSION MATRIX FOR EXPERIMENT 2 HOT TEA

WATER UNDER RANDOM FOREST CLASSIFIER

TABLE VIII

CONFUSION MATRIX FOR EXPERIMENT 2 DISTINGUISHING

SOLIDS UNDER RANDOM FOREST CLASSIFIER

between the Hot Tea and Water class label. The Random
Forest Classifier resulted in a 90.0% F-measure compared
to 69.0% and 84.0% F-measures of Bayesian Networks and
kNN (with k=3 yielding the best results), respectively.

It’s interesting to note the challenge of distinguishing
between solids. While there are an infinite number of food
types, people often maintain a regular regimen. Such a system
can become customized based on each subjects diet. As seen
in Table VIII the Random Forest Classifier consistently outper-
forms other well-known classifiers, even when distinguishing
between solids, achieving an F-measure of 80%. The Bayesian
Network and kNN classifier resulted in a 72.6% and 65.4%
F-measure, respectively. Table VIII provides the confusion
matrix for the Random Forest Classifier.

VII. CONCLUSION

In this paper we performed classification of swallows using
statistical features collected from spectrograms generated from
piezoelectric sensor signals. Our results show promise in using
spectrogram analysis in combination with piezoelectric sensors
as opposed to audio sensors. We have developed and tested a
necklace prototype which has shown the ability to successfully
distinguish between liquids and solids in two experiments
using Random Forest Classifier with 100 trees resulting in
an F-measure above 90%. We show a system and framework
capable of distinguishing between hot and cold drinks with an
F-measure of 90%. We also show potential for distinguishing
between solid food types with an F-measure of about 80%.
Our future work intends to expand classification to different
types of foods, and test in more natural living environments.
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