
0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2570210, IEEE
Transactions on Biomedical Engineering

Dynamic Computation Offloading for Low Power
Wearable Health Monitoring Systems

Haik Kalantarian, Costas Sideris, Bobak Mortazavi, Nabil Alshurafa, Majid Sarrafzadeh

Abstract—Objective: The objective of our work is to describe
and evaluate an algorithm to reduce power usage and increase
battery lifetime for wearable health-monitoring devices. Methods:
We describe a novel dynamic computation offloading scheme
for real-time wearable health monitoring devices that adjusts
the partitioning of data processing between the wearable device
and mobile application as a function of desired classification
accuracy. Results: By making the correct offloading decision
based on current system parameters, we show that we are
able to reduce system power by as much as 20%. Conclusion:
We demonstrate that computation offloading can be applied
to real-time monitoring systems, and yields significant power
savings. Significance: Making correct offloading decisions for
health monitoring devices can extend battery life and improve
adherence. 1

Index Terms—power optimization, pervasive computing, signal
processing, machine learning

I. INTRODUCTION

A. Introduction to Wearables

As smartphones have entered ubiquity in recent years,
various wearable wireless health monitoring gadgets have been
proposed. These devices have broad applications ranging from
physical activity monitoring [1], to more experimental applica-
tions such as diet tracking [3], mental stress detection [6], and
rehabilitation [8]. Spurred by a rapidly aging global population
and the emergency of lightweight, affordable microelectronics,
wearable devices will have increasingly broad applications for
consumers and clinicians in the years to come. One of the
most significant challenges in medicine is non-adherence, as
prior studies have shown that non-compliance to treatments
is associated with a host of negative health outcomes [10].
Among other factors, battery life has been reported to be
a significant contributor to non-adherence [12], as frequent
battery recharging may present a repeated burden to the user.
Moreover, the device cannot report user activity when the
battery has been depleted, resulting in a loss of data. For
these reasons, an increasing amount of attention has been
directed towards improving the battery life of wearable health
monitoring devices is recent years.

B. Energy Usage

Regardless of function or application, wearables have many
fundamental architectural similarities. The primary compo-
nents typically consist of:

1Copyright (c) 2016 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending an email to pubs-permissions@ieee.org.

Remote Processing
(send raw data)

Local Processing
(send only class labels)

Fig. 1. Wearable devices must evaluate the performance penalty of RF
transmission when deciding to perform data computation locally vs. remotely.

1) Sensors: One or more sensors, sampled at a particular
frequency depending on the application. These sensors are the
foundation through which the device can detect user activity.

2) Microcontroller: A microcontroller that performs the
sensor sampling, processes the data, and interfaces with other
peripherals.

3) Transceiver: A wireless transceiver which transmits data
remotely to a mobile phone or cloud services for analysis,
visualization, and feedback.

In wearable devices, it is often the case that a significant
amount of system power is expended on wireless transmission
and local computation. Wireless transmission overhead refers
to the power necessary to transmit data from the microcon-
troller to a mobile application using a technology such as
Bluetooth. Local computation overhead refers to the power
requirements of data processing performed on the wearable
device’s microcontroller. Unfortunately, as Figure 1 illustrates,
it is often the case that optimizing the energy of the micro-
controller and wireless transceiver are diametrically opposing
goals. Assume there is some feature or property f, that we are
interested in detecting from a continuous signal. There are two
possible approaches to detect such an event. The first option
is to process the data locally on the wearable device, and only
transmit the minimal information: that we have detected f.
This puts a significant burden on the computation resources
of the microcontroller, as processing the sensor data can be
expensive and resource intensive. However, in this approach
it is only necessary to transmit the final class label to the
mobile phone, rather than the raw data, which minimizes total
Bluetooth overhead.

The second option is to perform no data processing on the
local device, deferring the processing to the smartphone. This

0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2570210, IEEE
Transactions on Biomedical Engineering

(1) Local data
processing.

(2) Transmission
of class label.

(1) Transmission
of raw data.

(2) Remote data
processing.

Performance
Requirement

Cost Analysis

Classifier Feature
set

Some heuristic
(or system call)

Sample
rate

Fig. 2. This figure shows the overall system flow. Each time the required
classification accuracy is adjusted, a new decision is made on whether to
process the data locally or transmit for remote processing on a smartphone.

approach saves local computation energy on the microcon-
troller, as it is no longer required to do any expensive pro-
cessing or classification; the microcontroller can transmit the
sensor data as soon as it is acquired. However, this approach
may result in higher wireless transmission overhead, which in
many cases can be even more than that of local computation.
The decision on whether to process data locally or remotely is
a function of many parameters, such as Bluetooth connection
interval, sample rate, classifier choice, and more.

C. Computation Offloading

Computation offloading is a broad paradigm in which data
is outsourced from local computation to a server, cloud, or
other form of aggregator. The primary objective of computa-
tion offloading is to reduce the energy demands of a small
microcontroller with a low battery capacity, or to perform
very resource-heavy operations on more powerful hardware
for performance reasons. The motivation behind this approach
is that mobile phones typically have much larger batteries than
small wearable devices, just as servers have more hardware
resources than personal computers. In this paper, we propose a
novel algorithm for dynamic computation offloading, targeted
towards real-time wearable health monitoring applications.
While many other works have discussed different strategies
for offloading computation [15], [16]. However, our work
focuses specifically on modern cutting-edge wearable devices,
emphasizing the tradeoffs between local computation and
Bluetooth transmission overhead as a function of the required
classification accuracy.

II. CLASSIFICATION FLOW

In this section, we begin with the preliminaries of a modern
real-time health monitoring system. An example architecture
for such a system consists of the steps shown in Figure 3.

A. Acquisition

In this stage, the microcontroller on the wearable device
acquires data from a sensor and buffers it locally. The choice
of sample rate fs is critical at this stage, and is dependent
on the type of sensor used. More data samples may require
more Bluetooth transmissions in cases when computation is
offloaded. Furthermore, in cases when computation is per-
formed locally, there is still additional overhead associated
with processing more data.

TABLE I
DEFINITION OF TERMS

Term Description
Cx Cost (in terms of power) to execute operation x
F A set of features associated with a window.
fs Sample rate: the rate at which data is acquired

from the sensor.
M Function that maps feature set, classifier, and set

size to a cost.
K Variable that represents the classification algorithm

used (eg. RandomForest), BayesNet.
n Number of features extracted.
BW Bandwidth: the rate at which data is transmitted

wirelessly between device and phone.
λ Connection interval: how often a connection

is established between two Bluetooth devices.

B. Segmentation

In the next stage, the signal is divided into shorter windows,
each of which are typically processed independently of one
another. This is necessary, because it is often impractical to
assign a single class label to a very large dataset. Windows
that are not associated with any particular activity are known
as the null class, which can be discarded after processing.

The three primary methods in literature are sliding window
approaches, similar to the baseline used in this paper, and
recursive techniques that are either partition the entire signal,
or merge small denominations of the signal, until a stopping
criteria is met. Comprehensive surveys of time-series segmen-
tation are provided by Keogh et al. in [19], and Lovri et al. in
[20]. We refer the reader to these works for a more detailed
discussion of the topic.

C. Extraction

From each window, a set of representative features are
extracted. The number of features that must be extracted at
this phase can also have a significant impact on total system
power; larger feature sets may provide higher classification
accuracy in some cases. The features extracted during this
step are pre-selected during the classifier training process using
various feature selection and dimension reduction algorithms.
However, the feature extraction must be performed in real-
time.

D. Classification

The features are the inputs to a pre-trained classifier, which
outputs a class label that descibes the actions represented by
the window. Once again, the classifier may be trained a priori.
However, a real-time system would generally require that the
classifier be run periodically to provide user feedback.

III. ENERGY MODELING

In this section, we describe our model for power dissipation
in a wearable health-monitoring device. An explanation of
terms and symbols is provided in Table I.

0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2570210, IEEE
Transactions on Biomedical Engineering

M
ag

n
it

u
d

e
Time

Acquire data samples

from sensor.

(1) Acquisition

M
ag

n
it

u
d

e

Time

Divide signal into

discrete windows.
(2) Segmentation

M
ag

n
it

u
d

e

Time

1 2 3 . . N

Extraction of features

from each window

(3) Extraction

(4) Classification

1

2

3

.

.

N

1

2

3

4

5

0

1

Input features
Output class labels

2

Legend

Sensor Signal

Class Label

Window

Finally, we assign a class label to each window

based on input feature set and classifier output

M
ag

n
it

u
d

e

Time

1 0 0 20 22

Class Labels

(5) Class assignment

Fig. 3. This figure depicts the overall classification model assumed by this
paper. A microcontroller acquires data from a sensor at some sample rate
fs, segments the signal into discrete windows, extracts features from each
window, and uses a pre-trained classifier to assign a class label to that segment.

A. A General Model

A simplified model to represent power consumption in a
system consisting of a wearable device and a paired smart-
phone can be represented as the sum of the cost of extracting
features, running them through a classifier, and transmitting
any necessary information between the phone and device.
Though there are other sources of power dissipation such as
sampling, segmentation, and leakage, we focus our analysis
on the model shown in Equation 1 in this paper.

Ctotal = Cextraction + Cclassification + Ctransmission (1)

Assume we have a feature set F, consisting of a total of n
features, f1 through fn. Similarly, assume each feature fi has

a cost, Cfi . Thus, the cost of the feature extraction phase is:

Cextraction =
n∑

i=1

Cfi (2)

Modeling the cost of the classification is more challenging.
Generally, however, it is a function of the input feature set
F, feature size n, and the classifier algorithm used. We define
function M as a function that maps these parameters to the
total classifier cost.

Cclassification = M(F, K, n) (3)

If we perform both the feature extraction and classification
locally, the local energy can be modeled as the sum of the
feature extraction and classification costs.

Clocal = M(F, K, n) +
n∑

i=1

Cfi (4)

We can also model the local cost of transmitting the raw
data to the mobile device, and performing both the feature ex-
traction and classification remotely. We assume these features
are associated with a window of length L. Thus, the cost of
transmitting a window of length L is: Ctx(L). Note that this
relationship may not be linear; very high sampling rates may
change critical Bluetooth parameters such as the connection
and advertisement intervals. Combining these equations gives
us the equilibrium point, in which it is roughly equally costly
to process the data locally and remotely:

M(F, K, n) +
n∑

i=1

Cfi = Ctx(L) (5)

An adaptive system could modify several parameters in real-
time, to favor either local or remote processing:

1) Algorithm choice: Different classifiers, such as Random-
Forest, Support Vector Machines, and k-Nearest Neighbor,
have different runtimes. Switching to a lighter classifier can
swing the balance in favor of local processing at the cost of
classification accuracy.

Po
w

er
 C

o
n

su
m

p
ti

o
n

Classification Accuracy

Local
Processing

Region

Remote
Processing

Region

Unachievable
Region

Unachievable
Region

Local vs. Remote
Switching Threshold

Local processing
power curve

Remote Processing
Power Curve

Fig. 4. When the desired classification accuracy increases beyond a certain
threshold, it becomes more energy efficient to transmit the data from the
wearable to a mobile aggregator for processing.

0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2570210, IEEE
Transactions on Biomedical Engineering

2) Feature count: Choosing a different subset of features
may have dramatic performance implications. A higher num-
ber of input features may, in some cases, improve classification
accuracy. However, the relationship is not linear; very large
feature sets may overfit the training data and decrease total
classification accuracy.

Each classifier M can be represented by its classifier choice
and feature count, and is associated with a particular classifica-
tion accuracy and power budget. The subsequent challenge is
to identify the circumstances in which it is appropriate to vary
the desired classification accuracy to save power. However, the
specific scenarios are out of scope for this work; we refer the
readers to [25], [26], [27] for a discussion of these issues.

B. Connection Interval

The Bluetooth 4.0 LE standard, used in many wearable
devices, allows peripherals to suggest a connection interval
which specifies how often the device sends data. The Bluetooth
standard supports connection intervals ranging from 7.5 ms to
four seconds; higher connection intervals reduce system band-
width, but significantly reduce power consumption as well.
Typically, during each connection interval, several Bluetooth
packets can be transmitted. However, the Nordic nRF8001
used in our evaluation supports transmission of just one packet
[28] per connection event. The payload of each packet is
20 Bytes. According to [28], the total Bluetooth connection
bandwidth can be represented as a function of connection
interval γ, as shown below in Equation 6:

BWBT =
20 bytes

packet
· 1 packet

conn. event
· 1 conn. event

γ seconds
(6)

Generally, we would select a connection interval to satisfy
a particular bandwidth requirement. Simplifying Equation 6
gives us:

γ =
20 bytes

Bandwidth
(7)

Expectedly, higher sample rates (fs) are typically more
expensive to process and transmit. In accelerometer-based
activity monitoring applications, a sample rate of between 25
Hz and 100 Hz is typical, with some studies claiming that
45 Hz is optimal [29]. Remote computation schemes will
generally require that all sampled data is transmitted to the
mobile phone for processing. If we assume each data sample
is a 32-bit integer (four bytes), we can model the required
connection interval as a function of sample rate below:

γ =
20 bytes

4 · fs
(8)

By comparison, local processing schemes can have almost
negligible wireless transmission overhead, as it is only neces-
sary to transmit a class label once an event is detected.

IV. ALGORITHM

A. Classifier Accuracy Adjustment

Many prior works have scaled down accuracy to save power,
for various applications including classification and health
monitoring. For example, Benbasat et al. propose a power
efficient sensor system in [25], in which a wearable gate
monitor is optimized by adjusting classification accuracy. In
[26], Ghasemzadeh et al. propose a two-tiered classification
scheme in which preliminary classification is achieved us-
ing lightweight, low-power techniques. A similar two-stage
scheme was proposed by Shih et al. in [27] in which a power-
efficient screening stage precedes a more computationally
expensive analysis stage. The key insight these works is that
it is not always necessary to run the classifier at its highest
accuracy setting; often, a low-power detection strategy can be
used, which transitions into a more expensive recognition stage
when various criteria are met [31], [32], [33].

Dynamic optimization of classification accuracy for power
reduction is particularly useful in scenarios with sparse, short
duration events distributed across an entire day or week’s
worth of data. For example, a heart-rate monitor could be opti-
mized to enter low-power mode when a coupled accelerometer
shows little physical activity. Moreover, adjusting the sample
rate of an accelerometer when a subject begins to move has
been shown to maintain high classification accuracy, while
reducing power when more simple motions are performed
[34]. Though these prior works are able to successfully re-
duce power consumption, they generally do not evaluate the
tradeoffs between wireless transmission and local computation
upon changes in classification accuracy.

B. Dynamic Offloading

The proposed computation offloading scheme is as fol-
lows. First, the system pre-trains n classifiers, M1...Mn Each
classifier has the objective of maximizing total classification
accuracy for a given power budget, and may have a different
number of input features. Based on the desired sample rate,
we can predict the benefits of local and remote processing
using Equation 5 and select one of the two schemes. When
the user program specifies a need to improve the classification
accuracy based on some external inputs, we iterate through
the n possible classifiers and select classifier Mi that which
minimizes power consumption based on the required accuracy
threshold. Once this classifier is selected, its predicted cost is
computed using Equation 5, and a decision is made with re-
spect to local and remote processing overhead. This procedure
is shown in Algorithm 1.

Specifically, once we have selected a potential classifier and
feature set, we can compare the power consumption of local
and remote data processing. This process continues until the
next classification accuracy adjustment. Figure 4 shows the
proposed scheme, which depicts both local processing regions,
based on the desired classification accuracy. The point denoted
by the star represents the condition shown in Equation 5;
equal local and remote processing costs. The cost to process

0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2570210, IEEE
Transactions on Biomedical Engineering

Algorithm 1: Computation Offloading

1 function OnChangeAccuracyRequirement(int pct)
2 Begin
3 /* We select the optimal classifier which minimizes

power but meets the performance requirement. */
4 Classifier K = getClassifier (pct);
5 /*Estimate power from classifier, feature count. */
6 Power LocalPower = EstimatePower(K.Classifier,

K.FeatureCount);
7 Power RemotePower = EstimateRFPower(L, λ);
8 if LocalPower > RemotePower then
9 /* Determine that local processing is optimal. */

10 RunLocally();

11 else
12 OffloadComputation();

13 End

data locally is modeled as a function of two parameters: α
and β. Parameter α represents the cost to extract a single
feature, while β represents the cost to run a classifier on the
local application. We assume the classification cost on the
mobile device is negligable as the battery life is an order of
magnitude larger, and the focus of our work is primarily in
the optimization of the wearable device.

V. EXPERIMENTAL METHODOLOGY

A. Dataset

Our experimental methodology was derived from an audio-
based nutrition monitoring dataset described in [35]. Data
was collected from 20 individuals using a Hyperio Flexible
Throat Microphone Headset. The microphone was placed in
the lower part of the neck near the collarbone, and connected
directly to the mobile phones audio input port using a 3.5mm
male audio cable. 16 of the subects were male, and 4 were
female. The ages ranged from 21 to 31 years old, with a
median age of 22. Commercially available audio-recording
technology was used to acquire the audio recordings from the
microphone.The primary challenges of nutrition monitoring is
the identification of eating (such as chewing or swallowing)
from other ambient noises, and identifying the specific food
using various heuristics. The dataset used corresponded to
eating of three foods: nuts, chocolate, and a vegetarian patty.
Each food category consisted of sixty quarter-second samples,
for a total of 180 samples. Evaluation was conducted using
Leave-One-Subject-Out cross validation to avoid biasing the
dataset.

B. Feature Extraction

The feature extraction tool used on the audio dataset was
provided by the OpenSMILE framework [36]. This tool is
capable of various audio signal processing operations such as
applying window functions, FFT, FIR filterbanks, autocorre-
lation, and cepstrum. After data is collected from a variety of

TABLE II
SELECTED FEATURES

Rank Attribute (FFTMag) Information Gain
1 mfcc sma[5] quartile2 1.292
2 fftMag melspec sma[5] quartile1 1.286
3 mfcc sma[5] amean numeric 1.239
4 fftMag melspec sma[8] quartile1 1.231
5 fftMag melspec sma[7] quartile1 1.21

subjects eating several foods, feature selection tools can be
used to identify strong features that are accurate predictors of
swallows and bites for various foods. The top selected features
is shown in Table II. These features are produced using an
InformationGain attribute evaluation scheme provided by the
WEKA data mining software [37]. For a detailed explanation
of these features and a more qualitive explanation of what they
represent, we refer the reader to the openSmile documentation
[36]; the specific setting used was the emo large configuration

C. Bluetooth Modeling

Power simulations were conducted in the nRFgo Studio
software, based on the nRF8002 integrated circuit by Nordic
Semiconductor. The simulations assumed no advertisement pe-
riod, and a default connection interval of 1000 ms. We initially
simulated two use cases: one in which 20 bytes (payload)
of data are transmitted at a rate of 100 Hz, and another
in which data is transmitted at a rate of 1 Hz. These two
conditions correspond with remote processing (sending all the
data) and local processing (sending class labels) respectively.
Subsequently, we experimented with various sensor sample
rates and adjusted the connection interval accordingly based
on the increase in bandwidth.

D. Computation Modeling

The WEKA data mining software is used to evaluate the
performance of various classifiers based on the input features
extracted from the openSMILE toolkit from each audio snippet
from the nutrition monitoring dataset. The performance of
all classifiers was normalized based on our prior results on
the MSP430 platform in [39], in which we measured the
performance of various algorithms in real-time on a Texas
Instruments development board. Similarly, the cost of extract-
ing a particular feature is derived based on our prior work in

Number of Features
5 10 15 20

C
la

ss
if

ic
at

io
n

 A
cc

u
ra

cy

70

75

80

85

90

95

100
Accuracy vs. Feature Size

RandomForest
Logistic
SMO
NaiveBayes

Fig. 5. This figure shows variations in accuracy as a function of classifier,
and feature set size.

0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2570210, IEEE
Transactions on Biomedical Engineering

Number of Features
5 10 15 20

R
u

n
ti

m
e

(m
s)

0

0.5

1

1.5

2

2.5

3

3.5
Runtime Speed vs. Feature Size

RandomForest
Logistic
SMO
NaiveBayes

Fig. 6. This figure shows variations in runtime speed as a function of classifier,
and feature set size.

[39], with the simplifying assumption that each feature has the
same cost.

The four classifiers used in our evaluation are: Logistic Re-
gression, Sequential Minimal Optimization, Naive Bayesian,
and Random Forest. These classifiers were selected on the
basis of their high accuracy in our prior audio-based nutrition
monitoring study in [35]. Sequential Minimal Optimization
is an efficient implementation of the quadratic programming
problem in the training of support vector machines that is
commonly used in various classification applications [40].

VI. RESULTS AND DISCUSSION

A. Classifier Performance

Figure 5 shows the classification accuracy among four
classifiers, as a function of feature set size. Note that the
classification accuracy does not linearly increase with the
number of features extracted; in some cases, more features
are detrimental to performance due to overfitting. Moreover,
some classifiers such the Naive Bayesian classifier, perform
well with small feature sets but fail to improve significantly
with greater numbers of attributes. Generally, this figure shows
that approximately five features are sufficient for classification
accuracy of over 75% for most classifiers, approaching 83%
in the case of Logistic Regression. The upper bound for
feature count, beyond which there appears to be no significant
improvement, appears to be approximately twenty features
with 87-88% accuracy.

Figure 6 shows classifier runtime as a function of feature
size and classifier choice. Classifier runtime on an embedded
microcontroller can be an approximate heuristic for power con-
sumption, as higher algorithm runtimes increase the percentage
of time the device is in active mode, rather than one of the
low-power modes in which output current is close to in the
microamperes range [39]. Simulations show that the Logistic
Regression classifier was associated with the lowest runtime,
across the entire range of features. Moreover, the runtime of
the logistic regression classifier did not noticably increase as
a function of number of input features. By contrast, the Naive
Bayesian classifier was quick with a small number of features,
but did not scale well with larger feature sets, but runtime
increased linearly with the feature count. The RandomForest
classifier had a somewhat high runtime, especially with small

Classification Accuracy
70 75 80 85 90

P
o

w
er

 R
at

io

0

1

2

3

4
Ratio of Remote vs. Local Power (- = 0.2)

, = 0.5
, = 0.3
, = 0.1
Equal Cost

Fig. 7. This figure depicts the ratio of power in the remote and local
processing schemes at various values of α, the cost per feature extraction,
and β of 0.2 (relative classifier execution cost). A power ratio of 1 represents
the equilibrium case.

input feature sets. However, the runtime did not increase when
sweeping the feature size between 2 and 20.

The implications of these results are shown in Table III:
for each desired accuracy level, we can select an optimal
combination of classifier and classification feature size. In
this case, Logistic Regression was the optimal choice for
almost every scenario except accuracy of 85%, in which
Sequential Minimal Optimization (SMO) was preferred by a
small margin. Though Logistic Regression has a lower runtime
cost, the extraction cost becomes much more significant for
larger feature sets.

B. Comparison of Local and Remote Processing

Assuming a connection interval of 10 ms and a payload size
of 20 bytes, simulator results show average power as 964 µw.
Figures 7 and 8 show the power overhead of both techniques
as a function of various values of α and β. More specifically,
these graphs show how much power would be spent in a
remote processing scheme compared to a local processing
approach, at various desired accuracy levels. A power ratio
of 1, shown in black, represents the equilibrium case in which
local and remote processing powers are equal.

More specifically, we can observe that lower feature ex-
traction costs, as well as lower desired classification accura-
cies, are dramatically cheaper to execute locally rather than
remotely. However, as the required classification accuracy in-
creases, it is often necessary to use more expensive classifiers
and larger feature sets. Thus, these schemes favor remote pro-
cessing, particularly in systems with more expensive features.

TABLE III
BEST CLASSIFIER AND FEATURE SET COMBINATIONS FOR A GIVEN

ACCURACY

Accuracy (%) Lowest-Cost Classifier Feature Set Size
70% Logistic 2
75% Logistic 2
80% Logistic 6
85% SMO 20
90% Logistic 20

0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2570210, IEEE
Transactions on Biomedical Engineering

Classification Accuracy
70 75 80 85 90

P
o

w
er

 R
at

io

0

0.5

1

1.5

2

2.5

3
Ratio of Remote vs. Local Power (- = 0.5)

, = 0.5
, = 0.3
, = 0.1
Equal Cost

Fig. 8. This figure depicts the ratio of power in the remote and local
processing schemes at various values of α, the cost per feature extraction,
and β of 0.5 (relative classifier execution cost).

0 200 400 600 800
0

1

2

3

4

Bluetooth Power vs. Sample Rate

Sample Rate (Hz)

B
lu

et
o

o
th

 p
o

w
er

 (
m

W
)

@
 3

.3
v

Fig. 9. This figure shows the nonlinearity between sample rate and Bluetooth
transmission power. This suggests that Bluetooth offloading may be more
practical at higher sample rates, as local computation does not scale as
favorably.

C. Variations in Sample Rate

Our previous experiment assumed a connection interval
of 10 ms. This connection interval represents one Bluetooth
LE connection per second, at which time only one 20-Byte
payload can be transmitted based on the limitations of the
nRF8001 integrated circuit. Using Equation 8, we know that
this connection interval corresponds with a maximum band-
width of 500 samples per second on our evaluation platform.
Though there are applications for which a high sampling rate
is sufficient, smaller sample rates can suffice for other uses
cases such as environment monitors, dust particle detection,
ambient light detection, or smart-home applications. In this
section, we analyze the effects of sample rate on transmission
power.

Figure 9 shows the Bluetooth power at a 3.3 V supply
voltage as a function of sample rate. Interestly, this figure
shows that as bandwidth needs increase, wireless power dissi-
pation is less than linear. By comparison, Figure 10 shows
the local power dissipation as a function of sample rate
and accuracy thresholds. Our model shows a more linear
relationship between power and sample rate, given parameters
α = 0.1 and β = 0.5. This may suggest high sample rates favor
offloading, rather than local computation.

D. Variations in Sample Rate

For a baseline comparison, we consider a scenario in which
the system attempts to detect a short-duration event from a
large signal in a scenario with the baseline configuration. The

0 200 400 600 800
0

1

2

3

4

Local Power vs. Sample Rate

Sample Rate (Hz)

L
o

ca
l P

o
w

er
 (

m
W

)

70%
80%
90%

Fig. 10. This figure shows the relationship between local computation power
and sample rate for three different accuracies. Higher sample rates reduce the
amount of time the device spends in low-power mode.

Time (s)
0 5 10 15 20 25

A
cc

u
ra

cy
 R

eq
. (

%
)

65

70

75

80

85

90

95
Test Scenario (Desired Accuracy vs. Time)

Time (s)
0 5 10 15 20 25

P
o

w
er

 (
m

W
)

0

1

2

3
Local Processing Power

Local Processing Power
Average Local Power
Remote Processing Power

Time (s)
0 5 10 15 20 25

P
o

w
er

 (
m

W
)

0

1

2

3
Adaptive Scheme Power

Adaptive Scheme
Avg. Power

Fig. 11. This figure shows a comparison between local, remote, and adaptive
schemes in a system which alternates between low and high accuracy
requirements.

system specifications are to operate at 90% accuracy for 10%
of the time, and enter low-power mode (70% accuracy) for
the remainder of the time. For this experiment, we assume
parameters α of 0.1 and β of 0.5. This scenario is shown at
the top of Figure 11. As this figure shows, the local processing
scheme is optimal at lower accuracies, while remote offloading
is favored at high accuracies. By adapting computation as a
function of classification accuracy, we are able to reduce power
from an average of 0.52 mW to 0.41 mW; a decrease of 21.1%
compared to the local processing scheme.

VII. CONCLUSION

In this paper, we have demonstrated a novel scheme for se-
lective computation offloading based on user-defined accuracy
constraints. Our simulations show that with a baseline classi-
fier execution cost of 0.2 mW and feature extraction cost of 0.1
mW, making a correct offloading decision can reduce power by
over 20% in certain scenarios. Future work will evaluate these
algorithms in a system feature an implementation of real-time
classification accuracy adjustment to benchmark our proposed
scheme.

0018-9294 (c) 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TBME.2016.2570210, IEEE
Transactions on Biomedical Engineering

REFERENCES

[1] “Misfit wearables faq,” http://www.misfitwearables.com/supportl.
[2] “Jawbone up technical specifications,”

http://jawbone.com/store/buy/up24.
[3] H. Kalantarian et al., “Monitoring eating habits using a piezoelectric

sensor-based necklace,” Elsevier Computers in Biology and Medicine,
vol. 58, no. C, pp. 46–55, 2015.

[4] W. Jia et al., “Accuracy of food portion size estimation from digital
pictures acquired by a chest-worn camera,” Public Health Nutrition,
vol. FirstView, pp. 1–11, 12 2013.

[5] E. Sazonov et al., “Toward objective monitoring of ingestive behavior in
free-living population,” Obesity, vol. 17, no. 10, pp. 1971–1975, 2009.

[6] F.-T. Sun et al., “Activity-aware mental stress detection using physiologi-
cal sensors,” in Mobile computing, applications, and services. Springer,
2012, pp. 211–230.

[7] A. Parate et al., “Risq: Recognizing smoking gestures with inertial
sensors on a wristband,” in Proceedings of the 12th annual international
conference on Mobile systems, applications, and services. ACM, 2014,
pp. 149–161.

[8] S. Patel et al., “A review of wearable sensors and systems with applica-
tion in rehabilitation,” Journal of NeuroEngineering and Rehabilitation,
vol. 9, no. 1, p. 21, 2012.

[9] W. Lutz, W. Sanderson, and S. Scherbov, “The coming acceleration of
global population ageing,” Nature, vol. 451, no. 7179, pp. 716–719,
2008.

[10] J. Dunbar-Jacob and M. Mortimer-Stephens, “Treatment adherence in
chronic disease,” Journal of clinical epidemiology, vol. 54, no. 12, pp.
S57–S60, 2001.

[11] B. Blackwell, “Treatment adherence.” The British Journal of Psychiatry,
1976.

[12] E. L. Murnane, D. Huffaker, and G. Kossinets, “Mobile health apps:
adoption, adherence, and abandonment,” in Proceedings of the 2015
ACM International Joint Conference on Pervasive and Ubiquitous
Computing and Proceedings of the 2015 ACM International Symposium
on Wearable Computers. ACM, 2015, pp. 261–264.

[13] N. Alshurafa et al., “Battery optimization in smartphones for remote
health monitoring systems to enhance user adherence,” in Proceedings
of the 7th international conference on PErvasive Technologies Related
to Assistive Environments. ACM, 2014, p. 8.

[14] K. Kumar et al., “A survey of computation offloading for mobile
systems,” Mobile Networks and Applications, vol. 18, no. 1, pp. 129–
140, 2013.

[15] U. Kremer, J. Hicks, and J. Rehg, “A compilation framework for
power and energy management on mobile computers,” in Languages
and Compilers for Parallel Computing, ser. Lecture Notes in Computer
Science, H. Dietz, Ed. Springer Berlin Heidelberg, 2003, vol. 2624, pp.
115–131. [Online]. Available: http://dx.doi.org/10.1007/3-540-35767-X8

[16] K. Kumar and Y.-H. Lu, “Cloud computing for mobile users: Can
offloading computation save energy?” Computer, vol. 43, no. 4, pp. 51–
56, April 2010.

[17] G. Xiaohui et al., “Adaptive offloading inference for delivering appli-
cations in pervasive computing environments,” in Pervasive Computing
and Communications, 2003. (PerCom 2003). Proceedings of the First
IEEE International Conference on, March 2003, pp. 107–114.

[18] J. Liu, K. Kumar, and Y.-H. Lu, “Tradeoff between energy savings and
privacy protection in computation offloading,” in Proceedings of the 16th
ACM/IEEE International Symposium on Low Power Electronics and
Design, ser. ISLPED ’10. New York, NY, USA: ACM, 2010, pp. 213–
218. [Online]. Available: http://doi.acm.org/10.1145/1840845.1840887

[19] E. Keogh et al., “Segmenting time series: A survey and novel approach,”
Data mining in time series databases, vol. 57, pp. 1–22, 2004.

[20] M. Lovrić, M. Milanović, and M. Stamenković, “Algorithmic methods
for segmentation of time series: An overview.”

[21] Z. Xu et al., “An adaptive algorithm for online time series segmentation
with error bound guarantee,” in Proceedings of the 15th International
Conference on Extending Database Technology, ser. EDBT ’12. New
York, NY, USA: ACM, 2012, pp. 192–203. [Online]. Available:
http://doi.acm.org/10.1145/2247596.2247620

[22] M. Okutomi and T. Kanade, “A locally adaptive window
for signal matching,” International Journal of Computer Vision,
vol. 7, no. 2, pp. 143–162, 1992. [Online]. Available:
http://dx.doi.org/10.1007/BF00128133

[23] V. Katkovnik, K. Egiazarian, and J. Astola, “Adaptive window
size image de-noising based on intersection of confidence
intervals (ici) rule,” Journal of Mathematical Imaging and
Vision, vol. 16, no. 3, pp. 223–235, 2002. [Online]. Available:
http://dx.doi.org/10.1023/A3A1020329726980

[24] R. Klinkenberg and T. Joachims, “Detecting concept drift with support
vector machines,” in Proceedings of the Seventeenth International
Conference on Machine Learning, ser. ICML ’00. San Francisco, CA,
USA: Morgan Kaufmann Publishers Inc., 2000, pp. 487–494. [Online].
Available: http://dl.acm.org/citation.cfm?id=645529.657791

[25] A. Y. Benbasat and J. A. Paradiso, “A framework for the
automated generation of power-efficient classifiers for embedded
sensor nodes,” in Proceedings of the 5th International Conference
on Embedded Networked Sensor Systems, ser. SenSys ’07. New
York, NY, USA: ACM, 2007, pp. 219–232. [Online]. Available:
http://doi.acm.org/10.1145/1322263.1322285

[26] H. Ghasemzadeh and R. Jafari, “Ultra low-power signal processing
in wearable monitoring systems: A tiered screening architecture
with optimal bit resolution,” ACM Trans. Embed. Comput. Syst.,
vol. 13, no. 1, pp. 9:1–9:23, Sep. 2013. [Online]. Available:
http://doi.acm.org/10.1145/2501626.2501636

[27] E. Shih and J. Guttag, “Reducing energy consumption of multi-channel
mobile medical monitoring algorithms,” in Proceedings of the 2Nd
International Workshop on Systems and Networking Support for Health
Care and Assisted Living Environments, ser. HealthNet ’08. New
York, NY, USA: ACM, 2008, pp. 15:1–15:7. [Online]. Available:
http://doi.acm.org/10.1145/1515747.1515767

[28] S. S. Ole Morten. (2014, jul) How do i cal-
culate throughput for a ble link? [Online]. Avail-
able: https://devzone.nordicsemi.com/question/60/what-is-connection-
parameters/

[29] C.-C. Yang and Y.-L. Hsu, “A review of accelerometry-based wearable
motion detectors for physical activity monitoring,” Sensors, vol. 10,
no. 8, pp. 7772–7788, 2010.

[30] A. Khan et al., “Optimising sampling rates for
accelerometer-based human activity recognition,” Pattern
Recognition Letters, pp. –, 2016. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0167865516000040

[31] S. Huang, “Adaptive sampling with mobile sensor networks,” Ph.D.
dissertation, Michigan Technological University, 2012.

[32] A. Jain and E. Y. Chang, “Adaptive sampling for sensor networks,” in
Proceeedings of the 1st international workshop on Data management
for sensor networks: in conjunction with VLDB 2004. ACM, 2004, pp.
10–16.

[33] A. D. Marbini and L. E. Sacks, “Adaptive sampling mechanisms in
sensor networks,” in London Communications Symposium, 2003.

[34] S. Bobek, M. layski, and G. Nalepa, “Capturing dynamics of mobile
context-aware systems with rules and statistical analysis of historical
data,” in Artificial Intelligence and Soft Computing, ser. Lecture
Notes in Computer Science, L. Rutkowsk et al.i, Ed. Springer
International Publishing, 2015, vol. 9120, pp. 578–590. [Online].
Available: http://dx.doi.org/10.1007/978-3-319-19369-451

[35] H. Kalantarian and M. Sarrafzadeh, “Audio-based detection and eval-
uation of eating behavior using the smartwatch platform,” Elsevier
Computers in Biology and Medicine, 2015.

[36] F. Eyben, M. Wöllmer, and B. Schuller, “Opensmile: The munich
versatile and fast open-source audio feature extractor,” in Proceedings
of the International Conference on Multimedia, ser. MM ’10. New
York, NY, USA: ACM, 2010, pp. 1459–1462. [Online]. Available:
http://doi.acm.org/10.1145/1873951.1874246

[37] M. Hall et al., “The weka data mining software: An update,” SIGKDD
Explor. Newsl., vol. 11, no. 1, pp. 10–18, Nov. 2009.

[38] ——, “The weka data mining software: an update,” ACM SIGKDD
explorations newsletter, vol. 11, no. 1, pp. 10–18, 2009.

[39] H. Kalantarian et al., “Power optimization for wearable devices,” in
IEEE International Conference on Pervasive Computing and Communi-
cation Workshops, 2015.

[40] J. Platt et al., “Sequential minimal optimization: A fast algorithm for
training support vector machines,” 1998.

