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a b s t r a c t

In recent years, smartwatches have emerged as a viable platform for a variety of medical and health-
related applications. In addition to the benefits of a stable hardware platform, these devices have a
significant advantage over other wrist-worn devices, in that user acceptance of watches is higher than
other custom hardware solutions. In this paper, we describe signal-processing techniques for identifica-
tion of chews and swallows using a smartwatch device's built-in microphone. Moreover, we conduct a
survey to evaluate the potential of the smartwatch as a platform for monitoring nutrition. The focus of
this paper is to analyze the overall applicability of a smartwatch-based system for food-intake
monitoring. Evaluation results confirm the efficacy of our technique; classification was performed
between apple and potato chip bites, water swallows, talking, and ambient noise, with an F-measure of
94.5% based on 250 collected samples.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

There is little doubt that obesity is associated with various
negative health outcomes such as an increased risk for stroke,
diabetes, various cancers, heart disease, and other conditions. In
2008, medical costs associated with obesity were estimated to
exceed $147 billion, with over one-third of adults in the United
States estimated to be obese [1]. The two major contributors to
weight gain are an inactive lifestyle and poor diet. Though the
former has been addressed by many wearable devices in recent
years both in research and the consumer electronics field, few
works exist on automatic detection of dietary habits in an incon-
spicuous form-factor [2–4]. Instead, characterization of an indivi-
dual's eating habits is possible through manual record keeping
such as food diaries, 24-h recalls, and food frequency question-
naires. However, these approaches suffer from low accuracy, high
user burden, and low rates of long-term compliance. Wireless
health-monitoring technologies have the potential to promote
healthy behavior and address the ultimate goal of enabling better
lifestyle choices.

In recent years, several electronic devices have been proposed
for monitoring dietary habits. However, most works attempt to
characterize eating from patterns in chewing and swallow counts,
and very few proposed attempt to identify the nutritive properties

of the foods themselves. Therefore, a fundamental question in the
field of electronic food monitoring is the validity of chew and
swallow counts as a heuristic for estimation of Caloric intake. A
recent work by Fontana et al. [5] addresses this issue by comparing
several different techniques for estimation of Caloric intake:
weighed food records (gold standard), diet diaries, and electronic
sensor-based measurements of chews and swallows. Though the
study was conducted under constrained conditions, the results
suggest that chew and swallow counts may be a promising
alternative to manual self-reporting techniques.

While many audio-based nutrition monitors are novel from a
perspective of algorithmic techniques, they generally propose
custom hardware solutions or bulky non-standard equipment
which are of limited use outside of clinical environments. The
primary challenge of monitoring a subject's eating habits is
creating a system that provides passive monitoring of behavior,
presenting a low level of user burden and providing no compro-
mises on comfort and appearance: even the most accurate
techniques have very limited scope if they do not encourage
repeated use from users.

Recently, smartwatches have emerged as a new platform that
provide several promising applications such as wrist-worn activity
monitoring, heart rate tracking, and even stress measurement.
Watch usage is well established and has a high level of social
acceptance, as confirmed not only by our personal studies but by
their ubiquity in day-to-day life. Furthermore, the smartwatch
platform provides many useful services that can collectively
improve user adherence rates, rather than specialized devices
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with just one application that may fail to sustain a user's interest.
These devices contain a multitude of sensors including but not
limited to: a microphone, camera, accelerometer, and gyroscope.
Due to the ubiquity of watches, this technology can be used for
various wireless health monitoring applications discretely, with
low user burden. Furthermore, from a user-acceptance standpoint,
these systems have a clear advantage over other proposed solu-
tions based on custom hardware, which may require that these
bulky and non-standard devices be worn in unconventional ways.
Clearly, the multitude of sensors available on the smartwatch
platform, wireless connectivity, as well as the comfort and social
acceptance of the form-factor warrant further study into their
potential applications in the medical and health-monitoring
domain.

This paper explores the idea of tracking eating habits using a
custom Android application on the smartwatch platform. Though
identifying eating-related gestures using wrist-worn devices is a
viable application of the watch, the focus of our work is to explore
the idea of using audio to detect eating behavior based on bites,
rather than swallows as other works have done. A high-level
system architecture is presented in Fig. 1. The first step is audio-
based acquisition of eating-related sounds such as bites, acquired
from the microphone integrated within the smartwatch. After data
acquisition, the audio is processed using various classifiers to
identify the sound and infer the associated activity.

In addition, we conducted two surveys in order to evaluate the
potential of the smartwatch platform for nutrition monitoring. The
surveys were conducted online, with 221 respondents in the first
and 55 in the second. In the first survey, we asked subjects various
questions about their general habits with respect to watches. For

example, subjects were asked which hand they prefer to wear a
watch, and whether they were willing to wear a watch on the
opposite hand on which they were accustomed. In the second
survey, respondents provided information about their opinion of
various wearable form factors. Fifty-five subjects rated their
receptiveness to smartwatches, necklace-based wearables, custom
wrist-worn hardware, and smart glasses.

This paper is organized as follows. Section 2 provides an
overview of related work, primarily in the scope of audio-based
analysis of eating habits. Section 3 describes the hardware archi-
tecture of the system, based on around the Samsung Galaxy Gear
smartwatch. Section 4 describes the algorithmic aspects of our
work. Section 5 outlines the experimental procedure. Section 6
provides results and Section 7 provides concluding remarks.

2. Related work

The use of audio signals for analysis of swallows or eating
behavior has been explored in several other works. For example,
the work in [6] uses acoustic data acquired from a small micro-
phone placed near the bottom of the throat. Their system is
coupled with a strain gauge placed near the ear. In this work,
acquired data is manually labelled to provide a benchmark for
future classification. Analyzing wave shape in the time domain or
feature extraction and machine learning [7] has resulted in an 86%
swallow detection accuracy in an in-lab controlled environment.
In [8], Pler et al. proposed a system geared towards patients living
in ambient assisted living conditions and used miniature electret
microphones which were integrated into a hearing aid case, and
placed in the ear canal. In [9], the authors are able to achieve a
food detection accuracy of 79% using hidden Markov models based
on data acquired from microphones in the ear canal.

In the work by Amft et al. in [10], authors analyze bite weight
and classify food acoustically from an earpad-mounted sensor.
However, sound-based chewing recognition accuracy was low,
with a precision of 60–70%. In [11], the authors present a similar
earpad-based sensor design to monitor chewing sounds. Food
grouping analysis revealed three significant clusters of food: wet
and loud, dry and loud, soft and quiet. An overall recognition
accuracy of over 86.6% was achieved.

Though the signal processing aspects of this application are
relatively well developed, our work differs from prior approaches
in two significant ways. First, we propose the use of an audio
spectrogram for representing the changes in the frequency dis-
tribution of the signal over time, which is subsequently subdivided
into bins and used for feature extraction and selection. Therefore,
the classifier can distinguish between different foods based on the
frequency distribution of the signal over time. Secondly, prior
works rely on cumbersome multi-sensor hardware approaches
that have little utility out of laboratory environments, while our
algorithm runs on off-the-shelf Samsung hardware. Lastly, we
show how the extensive openSMILE feature extraction tool for
analyzing human vocalizations can be applied to other domains
for classification of sounds unrelated to speech patterns.

3. System architecture

Our proposed system does not require any custom hardware:
the Android application runs on Samsung Galaxy Gear smartwatch
running Android 4.2.1. This device, shown in Fig. 2, features an
800 MHz ARM-based processor, 512 MB of RAM, and a
320�320 pixel 1.6 inch display. The device also supports transfer
of data using the Bluetooth LE protocol, and can be configured to
access the Internet using Bluetooth tethering with compatible

(2) Transmission 
to smartphone 

(1) Audio acquisition during meals 

(3) Integration 
with cloud 
services 

(4) Analytics and 
user guidance 

Fig. 1. A high level architecture of the proposed system is shown above. Many
different forms of eating can be detected using a smartwatch, provided the
appropriate hand is used and the watch is brought close enough to the mouth.
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smartphones. Once the on-board algorithm detects that a bite has
been taken, a web-service call is made to store the data in a
database for access by caregivers. In the case of algorithm
inaccuracies and errors, subjects are permitted to manually make
modifications and add annotations to the data.

Data was recorded using the Samsung Galaxy Gear microphone
in MPEG-4 Part 14 (m4a) format at a rate of 96 kbps, as prior
research has shown that the spectral energy for many common
foods is between 0 and 10 kHz, with highest amplitude ranges
between 1 and 2 kHz for water [12,13]. Of note is the availability of
additional sensors on the Samsung Gear platform, including
accelerometers and gyroscopes, which can be used for improved
classification accuracy in future work, based on hand and wrist
motion associated with eating behavior.

The Samsung Galaxy Gear has a 315 mAh capacity battery. This
is significant because audio recording and transmission is a
relatively energy-intensive task that may compromise battery life.
This is partially mitigated by the decision to acquire data at a low
sample rate. A more comprehensive evaluation is provided in
Section 6.

4. Algorithm design

4.1. Frequency-domain evaluation: liquids

We begin our algorithm analysis with the objective of detecting
liquid ingestion using a smartwatch. Because we have a priori
knowledge about the kind of data we would like to identify, we
could pre-process the recorded data before classification, as we
describe in this section.

Fig. 3 shows a spectrogram corresponding with an audio clip
consisting of five water swallows acquired from the smartwatch. A
spectrogram is a visual representation of the frequency spectrum
over time, and is an ideal representation for extracting distinguish-
ing features in many classification problems. A spectrogram is
typically generated using a short-time Fourier transform (STFT)
with a fixed window size, the squared magnitude of which yields
the spectrogram. Fundamentally, a spectrogram allows easy iden-
tification of changes in the frequency spectrum of a signal, over
time. Fig. 4 shows a more detailed comparison between a brief
interval of noise (1 s) and a water swallow. Generally speaking, the
data of interest is between 600 Hz and 1 kHz, as shown by the
deviation between the signals at this time, and confirmed by the
spectrogram shown in Fig. 3. We conclude that analysis of this
frequency range is critical for classification of liquid swallows.
This observation is confirmed by Fig. 5, which shows the

transformation of an audio signal corresponding with 10 swallows.
The top waveform is the original, while the bottom is the post-
processed filter output in which noise is substantially reduced.
This is achieved by band-pass filtering the audio data with cutoffs
of 600 Hz and 1 kHz and a rolloff of 48 dB – meaning the
amplitude decreases by 48 dB for each octave outside the filter
threshold.

Fig. 2. The Samsung Galaxy Gear is the chosen hardware platform, which runs
Android 4.2.1 and features an 800 MHz ARM-based processor.
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Fig. 3. A spectrogram of an audio clip consisting of five swallows, generated with a
Hanning window of size 1024 samples. There is a visible change in the spectral
density at points corresponding with swallows as shown above.
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Fig. 4. Frequency distribution of a water swallow vs. silence (noise). This graph
reveals that the frequency range between 500 Hz and 1000 Hz is the point of
interest.
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Fig. 5. Post-processing of the audio signal corresponding with water can drama-
tically improve signal-to-noise ratio. The top shows the original waveform. The
bottom shows the waveform after a bandpass filter is applied.
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While the resulting signal clearly shows the swallows, marked
by pronounced peaks, this technique is not very generalizable to
other foods besides water, because the data is pre-processed. In
the case of the frequency distribution of a one second window
around the initial bite of a potato chip, compared to an equal
period of chewing, the amplitude of the bite signal is greater from
600 Hz to 4 kHz. However, the pattern is not as distinctive as for
liquids, and may certainly vary between individuals with different
eating styles. Therefore, a simplistic filter-approach may not be
sufficient for foods with less uniformity. More significantly,
removing a frequency band to simplify the recognition of one
food may also remove crucial information necessary for identify-
ing another, in systems which attempt to classify between very
different food types. Therefore, a more generalizable approach is
described in the next subsection.

4.2. Generalizable feature extraction

Detection of eating habits differs significantly from that of
liquid consumption, as the smartwatch will not necessarily be near
the throat during a swallow. When an individual is drinking water,
the swallows happen almost immediately after each sip. However,
chewing food takes a significant amount of time. Typically, the
smartwatch would be brought toward the mouth during the first
bite, after which it would be lowered once more during the
chewing process. Once the individual swallows the food, it is
difficult to predict the location of the microphone. Therefore, in
these cases we attempt to identify when an individual bites into a
food item rather than chewing. The smartwatch platform is
particularly well suited for this application because the micro-
phone will be nearest to the sound source during the times at
which the signal is of interest. The proposed model must be
flexible to identify biting and swallowing for many different foods
and drinks, between individuals with varying eating styles.

The Munich open Speech and Music Interpretation by Large
Space Extraction toolkit, known as openSMILE [14], is a feature
extraction tool intended for producing large audio feature sets.
This tool is capable of various audio signal processing operations
such as applying window functions, FFT, FIR filterbanks, autocor-
relation, and cepstrum. In addition to these techniques, openSMILE
is capable of extracting various speech related features and
statistical features. A partial list of extracted features is shown in
Tables 1 and 2. More “low-level” audio-based features include
frame energy, intensity, auditory spectra, zero crossing rate, and
voice quality. Therefore, the capabilities of this tool are signifi-
cantly more extensive than that of the spectrogram based
approach described earlier, which relied only on statistical features
from time–frequency decomposition. After data is collected from a
variety of subjects eating several foods, feature selection tools can
be used to identify strong features that are accurate predictors of
swallows and bites for various foods, while reducing the dimen-
sionality by eliminating redundant or weakly correlated features.

A microphone on a Smartwatch can either constantly record
data, or be configured to record audio based on motion-based
triggers indicative of eating-related gestures, in order to save
battery life. The recorded audio is stored on a buffer in Smartwatch

memory with storage for 4096 samples, corresponding with
0.25 s of data. Once the buffer is full, features are extracted
using openSMILE (elaborated upon in subsequent sections), and
the audio clip is classified divided into several distinct cate-
gories corresponding with the various foods the system has
been trained to detect. A counter is incremented corresponding
with the food type detected, which is necessary for long-term
record keeping. In the event that eating behavior is detected,
subsequent detection is disabled for a period of two seconds to
prevent duplicate records caused by the same event. The
algorithm is presented in Algorithm 1, with β¼ 4096 samples
and τ¼ 2 s.

Algorithm 1. Simplified classification scheme.

RecordAudio (Buffer);
if Buffer.Utilization ¼ β then
d¼ Buffer½1 : β�;
f ¼ ExtractFeaturesðdÞ;
s¼ fWater; Talk;Apple;Chips;Otherg;
c¼ Classifyðf ; sÞ;

66666664
Countercþþ;
if caOther then
⌊PauseRecordingðτÞ

To minimize the overlap between neighboring segments for
performance reasons, the last 50 ms of buffer data are cleared after
each classification activity, and classification resumes when the
buffer is full once again (not shown).

5. Experimental procedure

5.1. Data collection for recognition

A total of 10 subjects were used for data collection, with ages
ranging from 22 to 35 in order to develop a model for identifying
swallows. The subjects included 8 males and two females. Each
subject was asked to eat the following foods, in order: three apple
slices with at least two bites per slice, one 8 oz. glass of room-
temperature water, and one bag of potato chips. The moments at
which the food was bitten into (or swallowed as in the case of the
water) were manually annotated by the subject, though these
events were clearly audible on the resulting waveform. The hand
on which the smartwatch was worn was used to pick up the food
items and water, which happened to be the left hand for all
subjects.

Data collection took place in a laboratory environment which
had a minimal level of background noise including talking and
doors opening, most of which is barely audible in the recording.
However, pre-recorded background noise from a public shopping
square was combined with the original data, to produce clips that
more accurately reflect a real-world use case. It was assumed that
the background noise should be quieter than the original wave-
forms because in our experiments, the watch was inches away

Table 1
Partial list of openSMILE speech features from [20].

Speech-related features

Signal energy Loudness Mel/Bark/Octave spectra
MFCC PLP-CC Pitch
Voice quality Formants LPC
Line spectral pairs Spectral shape CENS and CHROMA

Table 2
Partial List of openSMILE statistical features from [20].

Speech-related features

Means Extremes Moments
Segments Samples Peaks
Zero crossings Quadratic regression Percentiles
Duration Onset DCT coefficient
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from the mouth at the time of the extracted audio clips. Regardless
of the food or activity type, each sample was exactly 0.25 s in
length, and the peak of the wave amplitude was not necessary
centered in the window. In some cases, such as during the biting of
an apple, one quarter of a second was not sufficient to capture the
entire bite. Therefore, the relevant information was partially
truncated. Subjects were then asked to read a brief passage from
a Wikipedia article, with no particular instruction about the rate at
which they should read. The data was then automatically split into
0.25 s audio fragments using an audio processing program. There-
fore, some samples were collected between phrases, and were
relatively silent. Other fragments had periods of silence as well as
vocalizations.

In order to evaluate if the classifier can distinguish between
background noise and other classes of data, we added a separate
“noise” class that we present in our classification results. However,
the background noise used was relatively uniform: a 50 s clip of
cafeteria noise consisting of movement, background chatter, and
silverware noise. The clip was divided into 50 quarter-second
samples. The environment was busy, and the noises were quite
pronounced in comparison to the relatively quiet sounds asso-
ciated with the other classes.

5.2. Smartwatch feedback: a survey

Before the system development phase, we had several impor-
tant questions about how individuals feel about smartwatches. As
described previously, a wearable device must have both high
accuracy and high rates of user adherence for the subject to reach
his or her intended goals. Furthermore, we proposed several
questions about which hand a subject prefers to wear a watch.
For example, our experimental evaluation requires that subjects
wear a watch on the same hand with which they typically eat food
such as chips or raise a glass of water. Though preliminary results
suggest that data from individuals who pick up food with the hand
on which they do not wear the watch can still be useful for
classification, a thorough evaluation is left to a future work.

An online survey was conducted with a total of 221 responses
in which various questions were posed with respect to how
individuals feel about wearing a smartwatch. The participants in
the study were anonymous, but represented a diverse set of ages,
cultures, and genders. The study was originally conducted on
January 28 for an internal data collection on smartwatch usage
applied to the domain of medication adherence, but we found the
majority of the questions were also applicable to food-intake
monitoring as most questions pertained to smartwatch usage in
general. This survey consisted of a total of 9 questions.

A separate online survey, with a total of 55 subjects, was later
conducted to specifically investigate the attitude of individuals
towards wearables in various form-factors. Specifically, subjects
were asked to rate their receptiveness to smartwatch-based
systems, custom wrist worn devices such as FitBit, necklace-
based wearables, and smart glasses. Survey results and discussion
can be found in Section 6.

6. Results and discussion

6.1. Audio classification

Results for classification between apples, chips, water, speak-
ing, and ambient noise are shown in Table 3 based on 50
unprocessed samples collected from each of these foods, using
the Random Forest classifier with 6555 extracted features from
each sample. The Random Forest classifier consisted of 100 trees,
each constructed using 13 random features, and was valid-

ated using leave-one-subject-out cross validation. Classifiers are
generally evaluated on the basis of precision, recall, and F-
measure. These terms are defined in Eq. (1) , where tp is the
number of true positives, and f p is the number of false positives.
The weighted average precision, recall, and F-Measure from our
experimental results were 94.7%, 94.4%, and 94.4% respectively. In
this case, the weighted average refers to the accuracy of the
classifier across all different food groups, weighted according to
the number of samples in each group. The majority of classification
errors were between apples and potato chips. It should also be
noted that while the ambient noise was disambiguated from the
other classes in every sample, the ambient noise data was all
recorded at the same location and therefore quite similar. There-
fore, further work must be done to validate the ability of the
proposed algorithm to recognize eating in real-world environ-
ments

Precision¼ tp
tpþ f p

Recall¼ tp
tpþ f n

F�Measure¼ 2 � Precision � Recall
PrecisionþRecall

ð1Þ

Several other classifiers were also evaluated, many of which
provided strong results using leave-one-subject-out cross-validation.
The full comparison of classifiers is presented in Fig. 7. Though the
RandomForest classifier produced the best results, the SimpleLogistic
technique produced comparable results. The J48 decision tree classifier
also performed well, with a precision, recall, and F-measure of 91.56%,
91.6%, and 91.5% respectively. The ROC curves for four classifier
outcomes are shown in Fig. 6.

6.2. Feature extraction

From the 6555 extracted features, the Correlation Feature Selection
(CFS) Subset Evaluator was used to evaluate 991,139 subsets of features.
This is necessary to select the features best associated with the desired
classifier outcomes. This subset evaluator considers both the individual
predictive ability of features and the redundancy between them, and
found the merit of the best subset to be 0.948. The search was stale
after 5 node expansions. In other words, the subset evaluator aggre-
gates the best features linearly beginning with those that show the
highest correlation, and terminates after five consecutive subsets
showing no improvement in classification accuracy.

The top 10 features are listed in Table 4. The first feature is the
skewness of the logarithmic signal energy, in which skewness is
defined as the asymmetry of the variable in comparison with a
normal probability distribution [15]. More formally, skewness is
defined in below, where μi is the ith central moment about the
mean

γ1 ¼
μ3

μ3=2
2

ð2Þ

Table 3
Audio: confusion matrix (random forest).

True class Predicted class

Apple Chips Noise Water Talk Recall (%)

Apple 40 9 0 1 0 80
Chips 3 47 0 0 0 94
Noise 0 0 50 0 0 100
Water 0 1 0 49 0 98
Talk 0 0 0 0 50 100
Precision 93.0% 82.5% 100% 98% 100%

H. Kalantarian, M. Sarrafzadeh / Computers in Biology and Medicine 65 (2015) 1–9 5



For a probability density function f (x), the first moment about
the mean is always zero (with s¼1), while the second moment is
the variance. The third central moment is defined as skewness
such that a distribution skewed to the right has a positive value,
while one shifted towards the left has a negative skewness. The

second most highly correlated feature is the mean peak distribu-
tion, which is defined as the mean distance between peaks for the
logarithmic representation of the signal energy. The third feature
is the number of non-zero values of the normalized log-energy
signal.

Features 4–10, preceded by MFCC, are Mel-Frequency Cepstral
Coefficients, which represent the spectral characteristics of the
signal. A cepstrum is the result of the Inverse Fourier Transform of
the logarithm of a signal spectrum. Mel-Frequency Cepstral
Coefficients are based on the mel scale, which is a perpetual scale
of pitches judged by listeners to be equidistant from one another
[16]. The relationship between the frequency and mel scales is
logarithmic, and can defined by the following formula (though
other variations exist) [16]:

MELðf Þ ¼ 2595 � log 10 1þ f
700

� �
ð3Þ

However, the human ear can discern differences in frequency at
low frequency ranges with a much higher resolution than at
higher ranges, due to the physical properties of the cochlea.
Therefore, a triangular Mel Filterbank is applied to the Discrete
Fourier Transform of the original signal. Next, a dot product is
computed between the filterbank and vector P(k), which yields N
intermediary coefficients – one for each triangle window function
in the filterbank. Because humans do not perceive loudness on a
linear scale, the logarithm is calculated for all N coefficients.
Finally, the Discrete Cosine Transform (DCT) of the log powers is
applied in order to decorrelate the energies of the overlapping
filterbank energies. The resulting coefficients are used to extract
statistical features as shown in Table 4.

6.3. Battery life implications

To realize the intended goal of minimizing burden, it is
desirable for wearable devices to remain powered for weeks, or
months, without interruption. Required nightly charging can be
considered a burden to the user, which is undesirable because high
user burden is typically associated with low compliance. Further-
more, energy-intensive applications can drain the battery com-
pletely, long before the user has an opportunity to recharge the
device. Subsequently, the user will either uninstall the application
or be unable to make proper use of it. Therefore, many activity
monitoring devices have carefully factored power-efficiency into
their design. Examples include that the Misfit Shine activity
monitor claims a battery life of four months [17]. Other wearables
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Fig. 6. The ROC curves for each classifier outcome, for the Random Forest classifier,
show how the true-positive and false-positive rates vary based on the classifier
threshold.

Table 4
Partial list of selected features.

Rank Feature Name

1 Log Energy: Skewness
2 Log Energy: Mean Distance Between Peaks
3 Log Energy: Zero Crossings
4 Mel-Freq: Simple Moving Average[0] Quartile 3
5 Mel-Freq: Simple Moving Average[0] Mean Distance Between Peaks
6 Mel-Freq: Simple Moving Average[0] Zero Crossings
7 Mel-Freq: Simple Moving Average[1] Quartile 2
8 Mel-Freq: Simple Moving Average[1] Mean Distance Between Peaks
9 Mel-Freq: Simple Moving Average[1] Arithmetic Mean of Peaks

10 Mel-Freq: Simple Moving Average[1] Arithmetic Mean

86.00% 87.00% 88.00% 89.00% 90.00% 91.00% 92.00% 93.00% 94.00% 95.00% 96.00%

RandomForest

SimpleLogistic

NaiveBayes

J48 Tree

F-Measure Recall Precision

Fig. 7. Precision, recall, and F-measure are common measures of classification accuracy. This figure reports these values for different classifiers.
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devices such as the Jawbone UP24 claim their devices can sustain
seven days of continuous use [18].

Power-efficiency is a matter of particular concern in audio
signal-processing applications such as the nutrition monitoring
approach described in this paper. Audio signal processing typically
requires that the signal be sampled at the Nyquist frequency,
which is rather high compared to approaches that rely on inertial
sensors such as accelerometers and gyroscopes. The Samsung
Galaxy Gear has a 315 mAh capacity battery, which is significantly
smaller than that of most mobile phones. In this section, we briefly
describe our evaluations of the battery life implications of record-
ing audio using the Samsung Galaxy Gear.

We evaluated the battery life of the smartwatch in three
different use cases. In the first case, the screen of the phone was
off and the watch was idle and unused. In the second case, the
watch was idle but the screen was on. In the third case, the screen
was on and the watch was recording audio at the same rate
(96 kbps) as required for our audio analysis algorithms. Therefore,
it can be inferred that the overhead of audio recording is the
difference between the screen on and the screen on while
recording. Our results are shown in Fig. 8. From these results, we
can draw several conclusions. First, it is evident that the Smart-
watch in a static mode with no computation and the screen off,
consumes very little energy. Secondly, the overhead of recording
audio is significant, and has a substantial effect on battery life. As
the graph shows, an hour of recording audio with the screen on
will consume 38% of the battery life, which amounts to approxi-
mately 119.7 mAh. Therefore, it can be assumed that the audio
recording functionality consumes 10% of the watch's battery life
per hour, as a rough approximation. Fig. 8 shows that the power
dissipation of the screen is significantly larger than that of the
audio recording and processing. Nevertheless, for long-term
applications, the energy overhead of consistent audio recording
may be prohibitive.

6.4. Smartwatch feedback: a survey

Fig. 9 provides several of the most pertinent questions from the
survey. From the total sample of 221 respondents, 86% claimed to
be right handed, 12% left-handed, and the remaining responded
that they were ‘unsure’ or the question was ‘not applicable’.

In the following question, a total of 76% of respondents stated
that they generally would wear a watch on their left hand, with an
additional 19% who preferred to wear the watch on their right

hand. The remaining 5% of those surveyed expressed no
preference.

The next question asked respondents how they felt about
wearing watches in general. Most individuals stated that they
always wear a watch (38%). However, 23% claimed that they
preferred not to wear a watch, 24% stated that they would not
mind, and 14% stated that they like to wear a watch. Only 1% of
individuals claimed that they would not consider wearing a watch.
The next survey question revealed that those who drank water out
of a glass would use their primary hand to lift the cup for their
mouth (69%), rather than the secondary hand on which the watch
is worn (20%) with a remaining 10% claiming to be unsure. The
final question asked respondents if they would be willing to wear
a watch on the opposite hand to which they are accustomed. 40%
of respondents answered ‘maybe’, 32% answering ‘yes’, and 28%
answering ‘no’.

These results are generally promising: almost no individuals
expressed an adamant refusal to wear a watch. Furthermore,
results suggest that most subjects show some flexibility about
which hand they wish to wear a watch. Consider foods that requ-
ire both hands to be raised towards the mouth, such as large
sandwiches or hamburgers. In such cases, the eating can be
detected regardless of which hand the subject prefers to wear
the watch upon. This is the case because during the initial bite, theFig. 8. A graph of battery life for three different use cases is shown above.

How do you feel about watches in general?

On what hand would you typically wear a watch?

Would you wear a watch on the opposite hand?

Are you right or left handed?

Fig. 9. Partial survey results are shown above.
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watch will be close to the mouth and the microphone can detect
the pertinent signals. However, failing to use the hand on which
the watch is worn to raise a glass of water or eat potato chips may
pose a challenge to detection, as the source is not as close to the
microphone, and it is possible that the signal-to-noise ratio may
be lower. The feasibility of detecting the ingestion of foods
consumed with the secondary hand should be explored in
future work.

It appears that enough individuals are willing to change which
hand they wear their watch, to make detection of most eating
habits possible if the algorithm settings are customized to their
personal habits. However, generally speaking, the results suggest
the importance of an adaptive algorithm that can be used to detect
eating habits regardless of the hand on which the device is worn.
This can potentially be achieved by detecting the distance between
the watch and the audio source, and performing amplification and
filtering accordingly. This will be explored in future works.

To evaluate the receptiveness of the public to the smartwatch
platform, we conducted a separate survey to specifically investi-
gate the attitude of individuals towards wearables in various form-
factors. A total of 55 subjects participated in the online survey, of
which 45.5% were male and 50.9% were female, and 3.6% who did
not identify. 25.5% of subjects were 17 and younger, 27.3% ranged
from 18 to 23, 27.3% were from 24 to 3, 12.7% were from 30 to 40,
and 7.2% were over 40 years of age.

Subjects were asked to rate their willingness to wear health-
monitoring wearable devices in four forms: glasses (such as
Google Glass), smartwatches (such as the Galaxy Gear), custom
wrist-worn hardware (such as FitBit), and necklaces (such as
WearSens [19]). The scale ranged from 1, “not at all interested”,
to 5, “I would be completely comfortable wearing it”. The results
can be found in Fig. 10. As the data suggests, “Smart Glasses” was
the least favorable option, with an average score of 2.47. The
“Necklace” and “Other Wristworn Hardware” options scored
similarly, at 2.78 and 2.74, respectively. The highest score was
associated with the smartwatch, with a rating of 3.25 out of 5.

With respect to the number of individuals who assigned a
rating of 5, the highest possible score, the smartwatch was also the
favorite. 25.5% of individuals assign the smartwatch a rating of 5,
compared to 9.1% with glasses, 10.9% for the necklace, and 10.9%
for the “Other Wearables” option.

6.5. System limitations and future work

This paper provides an introduction to the applicability of the
smartwatch platform for monitoring of eating habits, but there are
several limitations in the proposed scheme that must be thor-
oughly evaluated in future works. These are described below:

1. The information from bites in close succession can be used to
improve classification accuracy. For example, consider a subject
who eats an entire bag of chips. The classification of each chip bite
should not be conducted independently of the neighboring bites.

2. Smartwatch power optimization techniques should be devel-
oped, targeted towards selectivity in when audio recording is
enabled based on hand gestures recognized using inertial sensors.
Preliminary results show that the watch can only record audio for
a few hours without optimizations, which is impractical. In
addition, the sample rate of the audio signal could be substantially
reduced based on the frequency ranges of the events of interest.

3. The range of foods tested should be expanded significantly,
to evaluate the scalability of the proposed algorithm to real-world
conditions.

7. Conclusion

This paper presents a novel approach to detecting ingestion of
foods and liquids, using a smartwatch for identification of bites
and swallows from acoustic signals. We also present a survey of
users about smartwatch usage which confirms that a substantial
portion of individuals would be willing to wear a watch on the
hand with which they primarily eat. Future works will attempt to
analyze eating behavior from the secondary hand, and explore the
integration of audio-based detection of eating with inertial sensors
for gesture recognition.
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